One main goal of 5G-and-beyond systems is to simultaneously serve many users, each having a requested spectral efficiency (SE), in an energy-efficient way. The network capacity cannot always satisfy all the SE requirements, for example, when some users have bad channel conditions, especially happening in a cellular topology, and therefore congestion can happen. By considering both the pilot and data powers in the uplink transmission as optimization variables, this paper formulates and solves an energy-efficiency problem for cellular Massive MIMO (Multiple Input Multiple Output) systems that can handle the congestion issue. New algorithms based on the alternating optimization approach are proposed to obtain a fixed-point solution. Numerical results manifest that the proposed algorithms can provide the demanded SEs to many users even when the congestion happens.
Funding Agencies|ELLIIT; CENIIT; UK Research and Innovation Future Leaders Fellowships [MR/S017666/1]