liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A uniqueness result for functions with zero fine gradient on quasiconnected and finely connected sets
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-9677-8321
Linköping University, Department of Mathematics, Mathematics and Applied Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1238-6751
2020 (English)In: Annali della Scuola Normale Superiore di Pisa (Classe Scienze), Serie V, ISSN 0391-173X, E-ISSN 2036-2145, Vol. 21, p. 293-301Article in journal (Refereed) Published
Abstract [en]

We show that every Sobolev function in W-loc(1, p) (U) on a p-quasiopen set U subset of R-n with a.e.-vanishing p-fine gradient is a.e.-constant if and only if U is p-quasiconnected. To prove this we use the theory of Newtonian Sobolev spaces on metric measure spaces, and obtain the corresponding equivalence also for complete metric spaces equipped with a doubling measure supporting a p-Poincare inequality. On unweighted R-n, we also obtain the corresponding result for p-finely open sets in terms of p-fine connectedness, using a deep result by Latvala.

Place, publisher, year, edition, pages
Pisa, Italy: SCUOLA NORMALE SUPERIORE , 2020. Vol. 21, p. 293-301
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-173525DOI: 10.2422/2036-2145.201802_014ISI: 000612618500008OAI: oai:DiVA.org:liu-173525DiVA, id: diva2:1530118
Note

Funding Agencies|Swedish Research CouncilSwedish Research Council [2016-03424, 621-2014-3974]

Available from: 2021-02-21 Created: 2021-02-21 Last updated: 2021-02-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Björn, AndersBjörn, Jana
By organisation
Mathematics and Applied MathematicsFaculty of Science & Engineering
In the same journal
Annali della Scuola Normale Superiore di Pisa (Classe Scienze), Serie V
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 21 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf