We study the information freshness under three different source aware packet management policies in a status update system consisting of two independent sources and one server. The packets of each source are generated according to the Poisson process and the packets are served according to an exponentially distributed service time. We derive the average age of information (AoI) of each source using the stochastic hybrid systems (SHS) technique for each packet management policy. In Policy 1, the queue can contain at most two waiting packets at the same time (in addition to the packet under service), one packet of source 1 and one packet of source 2. When the server is busy at an arrival of a packet, the possible packet of the same source waiting in the queue (hence, source-aware) is replaced by the arrived fresh packet. In Policy 2, the system (i.e., the waiting queue and the server) can contain at most two packets, one from each source. When the server is busy at an arrival of a packet, the possible packet of the same source in the system is replaced by the fresh packet. Policy 3 is similar to Policy 2 but it does not permit preemption in service, i.e., while a packet is under service all new arrivals from the same source are blocked and cleared. Numerical results are provided to assess the fairness between sources and the sum average AoI of the proposed policies.
Funding Agencies|Infotech Oulu; Academy of FinlandAcademy of FinlandEuropean Commission [319485, 323698]; Academy of Finland 6Genesis Flagship [318927]; European Unions Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant [793402]; Finnish Foundation for Technology Promotion; HPY Research Foundation; Riitta ja Jorma J. Takanen Foundation; Nokia Foundation