liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Distractor-aware video object segmentation
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-3292-7153
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6096-3648
2021 (English)In: Pattern Recognition. DAGM GCPR 2021, 2021, p. 222-234Conference paper, Published paper (Refereed)
Abstract [en]

Semi-supervised video object segmentation is a challenging task that aims to segment a target throughout a video sequence given an initial mask at the first frame. Discriminative approaches have demonstrated competitive performance on this task at a sensible complexity. These approaches typically formulate the problem as a one-versus-one classification between the target and the background. However, in reality, a video sequence usually encompasses a target, background, and possibly other distracting objects. Those objects increase the risk of introducing false positives, especially if they share visual similarities with the target. Therefore, it is more effective to separate distractors from the background, and handle them independently.

We propose a one-versus-many scheme to address this situation by separating distractors into their own class. This separation allows imposing special attention to challenging regions that are most likely to degrade the performance. We demonstrate the prominence of this formulation by modifying the learning-what-to-learn method to be distractor-aware. Our proposed approach sets a new state-of-the-art on the DAVIS val dataset, and improves over the baseline on the DAVIS test-dev benchmark by 4.8 percent points.

Place, publisher, year, edition, pages
2021. p. 222-234
Series
Lecture Notes in Computer Science, ISSN 0302-9743, E-ISSN 1611-3349 ; 13024
National Category
Computer graphics and computer vision
Identifiers
URN: urn:nbn:se:liu:diva-175117DOI: 10.1007/978-3-030-92659-5_14Scopus ID: 2-s2.0-85124271728ISBN: 978-3-030-92658-8 (print)ISBN: 978-3-030-92659-5 (electronic)OAI: oai:DiVA.org:liu-175117DiVA, id: diva2:1545384
Conference
German Conference on Pattern Recognition
Available from: 2021-04-19 Created: 2021-04-19 Last updated: 2025-02-07
In thesis
1. Discriminative correlation filters in robot vision
Open this publication in new window or tab >>Discriminative correlation filters in robot vision
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In less than ten years, deep neural networks have evolved into all-encompassing tools in multiple areas of science and engineering, due to their almost unreasonable effectiveness in modeling complex real-world relationships. In computer vision in particular, they have taken tasks such as object recognition, that were previously considered very difficult, and transformed them into everyday practical tools. However, neural networks have to be trained with supercomputers on massive datasets for hours or days, and this limits their ability adjust to changing conditions.

This thesis explores discriminative correlation filters, originally intended for tracking large objects in video, so-called visual object tracking. Unlike neural networks, these filters are small and can be quickly adapted to changes, with minimal data and computing power. At the same time, they can take advantage of the computing infrastructure developed for neural networks and operate within them.

The main contributions in this thesis demonstrate the versatility and adaptability of correlation filters for various problems, while complementing the capabilities of deep neural networks. In the first problem, it is shown that when adopted to track small regions and points, they outperform the widely used Lucas-Kanade method, both in terms of robustness and precision. 

In the second problem, the correlation filters take on a completely new task. Here, they are used to tell different places apart, in a 16 by 16 square kilometer region of ocean near land. Given only a horizon profile - the coast line silhouette of islands and islets as seen from an ocean vessel - it is demonstrated that discriminative correlation filters can effectively distinguish between locations.

In the third problem, it is shown how correlation filters can be applied to video object segmentation. This is the task of classifying individual pixels as belonging either to a target or the background, given a segmentation mask provided with the first video frame as the only guidance. It is also shown that discriminative correlation filters and deep neural networks complement each other; where the neural network processes the input video in a content-agnostic way, the filters adapt to specific target objects. The joint function is a real-time video object segmentation method.

Finally, the segmentation method is extended beyond binary target/background classification to additionally consider distracting objects. This addresses the fundamental difficulty of coping with objects of similar appearance.

Abstract [sv]

På mindre än tio år har djupa neurala nätverk utvecklats till heltäckande verktyg inom flera vetenskapliga och tekniska områden på grund av deras nästan orimliga effektivitet när det gäller att modellera komplexa verkliga förhållanden. I synnerhet inom datorseende har de tagit uppgifter som objektigenkänning, som tidigare ansågs vara mycket svåra, och förvandlat dem till praktiska vardagliga verktyg. Neurala nätverk måste dock tränas med superdatorer på massiva datamängder i timmar eller dagar, och detta begränsar deras förmåga att anpassa sig till förändrade förhållanden.

Denna avhandling undersöker diskriminerande korrelationsfilter, ursprungligen avsedda för spårning av stora objekt i video, så kallad visual object tracking. Till skillnad från neurala nätverk är dessa filter små och kan snabbt anpassas till förändringar, med lite data och minimal datorkraft. Samtidigt kan de dra nytta av den infrastruktur som utvecklats för neurala nätverk och arbeta inom den.

De viktigaste bidragen i denna avhandling visar mångsidigheten och anpassningsförmågan hos korrelationsfilter för olika problem, samtidigt som de kompletterar kapaciteten hos djupa neurala nätverk. I det första problemet visas det att när de appliceras på att spåra små regioner och punkter, överträffar de den ofta använda Lucas-Kanade-metoden, både när det gäller robusthet och precision.

I det andra problemet appliceras korrelationsfiltren på en helt ny uppgift. Här används de för att skilja mellan olika platser i en 16 x 16 kvadratkilometer stor havsregion nära land, givet endast en horisontprofil - kustlinjens silhuett av öar och holmar sett från ett fartyg.

I det tredje problemet visas hur korrelationsfilter kan användas för segmentering av objekt i video. Detta är uppgiften att klassificera enskilda pixlar som tillhörande antingen ett målobjekt eller bakgrunden, givet en segmenteringsmask försedd med den första bildrutan som enda vägledning. Det visas också att diskriminerande korrelationsfilter och djupa neurala nätverk kompletterar varandra; där det neurala nätverket behandlar videon på ett innehålls-agnostiskt sätt, anpassar filtren sig till specifika målobjekt. Den sammansatta funktionen är en realtidsmetod för segmentering.

Slutligen utvidgas segmenteringsmetoden bortom binär mål- / bakgrundsklassificering till att dessutom beakta distraherande objekt. Detta adresserar den grundläggande svårigheten att hantera objekt som liknar varandra.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2021. p. 53
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2146
National Category
Computer graphics and computer vision
Identifiers
urn:nbn:se:liu:diva-174939 (URN)10.3384/diss.diva-174939 (DOI)9789179296360 (ISBN)
Public defence
2021-06-14, Ada Lovelace, B-building, Campus Valla, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2021-05-17 Created: 2021-04-19 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Robinson, AndreasEldesokey, AbdelrahmanFelsberg, Michael

Search in DiVA

By author/editor
Robinson, AndreasEldesokey, AbdelrahmanFelsberg, Michael
By organisation
Computer VisionFaculty of Science & Engineering
Computer graphics and computer vision

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 358 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf