When optimising the vehicle trajectory and powertrain energy management of hybrid electric vehicles, it is important to include look-ahead information such as road conditions and other traffic. One method for doing so is dynamic programming, but the execution time of such an algorithm on a general purpose CPU is too slow for it to be useable in real time. Significant improvements in execution time can be achieved by utilising parallel computations, for example, using a Field-Programmable Gate Array (FPGA). A tool for automatically converting a vehicle model written in C++ into code that can executed on an FPGA which can be used for dynamic programming-based control is presented in this paper. A vehicle model with a mild-hybrid powertrain is used as a case study to evaluate the developed tool and the output quality and execution time of the resulting hardware. Copyright (C) 2020 The Authors.