liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Influence of exposure to 980 nm laser radiation on the luminescence of Si: Er/O light-emitting diodes
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics . Linköping University, The Institute of Technology.
2008 (English)In: JOURNAL OF APPLIED PHYSICS, ISSN 0021-8979 , Vol. 104, no 12, 123110- p.Article in journal (Refereed) Published
Abstract [en]

Erbium (Er) codoping with oxygen (O) in Si is a well-known method for producing electroluminescent material radiating at 1.54 mu m through a 4f shell transition of Er3+ ions. In this work the influence of exposure to 980 nm radiation on the electroluminescence (EL) of reverse biased Si:Er/O light-emitting diodes (LEDs), which give a strong room temperature 1.54 mu m intensity, is presented and discussed. All the device layers, including Er/O doped Si sandwiched between two Si0.82Ge0.18 layers, have been grown on silicon on insulator substrates using molecular beam epitaxy and processed to fabricate edge emitting Si:Er/O waveguide LEDs. Electromagnetic mode confinement simulations have been performed to optimize the layer parameters for waveguiding. The temperature dependence of the 1.54 mu m EL intensity exhibits an abnormal temperature quenching with a peak near -30 degrees C, and at -160 degrees C it has decreased by a factor of 5. However, irradiating the devices with a 980 nm laser gives an enhancement of the 1.54 mu m EL intensity, which is more dramatic at low temperatures (e.g., -200 degrees C) where the quenched EL signal is increased up to almost the same level as at room temperature. The enhancement of the EL intensity is attributed to the photocurrent generated by the 980 nm laser, reducing the detrimental avalanche current.

Place, publisher, year, edition, pages
2008. Vol. 104, no 12, 123110- p.
electroluminescence, electroluminescent devices, elemental semiconductors, erbium, Ge-Si alloys, laser beam effects, light emitting diodes, optical waveguide components, oxygen, photoconductivity, radiation quenching, semiconductor doping, semiconductor epitaxial layers, silicon, silicon-on-insulator
National Category
Natural Sciences
URN: urn:nbn:se:liu:diva-16512DOI: 10.1063/1.3050316OAI: diva2:158118
Original Publication: Amir Karim, Chun-Xia Du and Göran Hansson, Influence of exposure to 980 nm laser radiation on the luminescence of Si: Er/O light-emitting diodes, 2008, JOURNAL OF APPLIED PHYSICS, (104), 12, 123110. Copyright: American Institute of Physics Available from: 2009-02-02 Created: 2009-01-30 Last updated: 2009-02-02Bibliographically approved
In thesis
1. Si-based structures for light emission and detection
Open this publication in new window or tab >>Si-based structures for light emission and detection
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Efforts to improve the optical performance of the indirect bandgap semiconductor silicon (Si) has been a major subject of research in the field of Si photonics due to the promising applications of Si based light emitters and detectors for optical communication. With that motivation three different Si based material systems were investigated; Si:Er/O layered structures, SiGe quantum dots and SiSn nano structures, all grown using the technique of molecular beam epitaxy (MBE). The main focus of this work has been on Si:Er/O layers, which lead to fabrication of Si-based light emitting diodes (LED) emitting at 1.54 mm wavelength. The work on SiGe structures lead to the fabrication of near-infrared light detectors, whereas the SiSn structures have not shown any strong optical character.

Studies include epitaxial growth, structural characterization, device processing, electrical and optical characterizations. Material characterization of Si:Er/O structures using analytical electron microscopy (AEM) revealed interesting results with identification of two different type of microstructures in these layers depending on the Er and O concentrations. Several Si:Er/O LEDs were fabricated with different Er and O concentrations and the optical characteristics were investigated in order to find the best doping levels of Er and O for efficient light emission. The electroluminescence measurements revealed a strong 1.54 mm emission from these devices due to the intra 4f shell transition of Er3+ from the excited state (4I13/2) to the ground state (4I15/2). Si:Er/O waveguide LEDs have also been grown on SOI wafers using the optimized structure parameters obtained from mode confinement simulations as well as the microstructure investigations. The Si:Er/O waveguide LEDs are aimed at fabricating a planar Si cavity with Bragg mirrors on both sides to obtain light amplification and realise an electrically pumped Si laser. A focused ion beam (FIB) instrument was used to fabricate the Bragg mirrors but initial attempts did not result in light amplification in our Si:Er/O waveguide cavities.

SiGe quantum dots are well-known quantum structures which are formed in a selfassembled fashion from Si/SiGe layer structures with a variety of shapes, sizes and compositions depending mainly on parameters like growth temperature and layer thicknesses. Optical properties of SiGe quantum structures have been studied while there has been little knowledge about their composition. A detailed compositional investigation of different SiGe dots on a nanometer scale was performed using AEM. The results showed a large degree of interdiffusion in large quantum dots, which was consistent with the optical properties of these dots. Using a multiple stack of Ge quantum dots and SiGe quantum wells, MOSFET type photodetectors working at 1.3 – 1.55 mm wavelength have also been fabricated and characterized.

Research on the SiSn system was mainly motivated by the possibility to obtain a direct bandgap transition in Si based material as it was predicted theoretically and experimentally observed in the related GeSn material system by other researchers. Structural and optical characterizations of SiSn nano structures were performed. Although the same SiSn nano structures exhibit a weak signature of optical absorption, low temperature photoluminescence measurements did not reveal any emission peaks related to the SiSn dots.

Abstract [sv]

Kisel är den helt dominerande halvledaren för tillverkning av de integrerade kretsar som utgör grunden för vårt nuvarande IT-samhälle. Samtidigt har det inte varit möjligt att använda kisel-komponenter inom det stora optoelektronikområdet, exempelvis i sändare och mottagare för fiberoptisk kommunikation. På grund av de stora fördelar det skulle innebära att kunna integrera optoelektronik med kiselbaserade komponenter på samma halvledarskiva så har det under de senaste åren varit mycket forskning kring möjligheterna att modifiera kisel så att det kan användas inom optoelektronik.

I denna avhandling har tre olika materialkombinationer studerats för att undersöka om kiselbaserade material kan användas för emission eller detektion av optiska signaler. Den största delen av arbetet handlar om att tillverka, studera och utnyttja strukturer med låga halter av erbium och syre som kan fungera som lysdioder i det infraröda området med just den våglängd, 1,54 μm, som används i de flesta fall av fiberoptisk kommunikation. Genom att studera hur ljusintensiteten beror på erbium- och syrekoncentrationerna samt den erhållna mikrostrukturen i materialet så har tillverkningen kunnat optimerats för högsta intensitet. Vidare har multilagerstrukturer utvecklats så att ljusemissionen sker ifrån en s.k. vågledare. Målsättningen har varit att skapa möjligheter för att erhålla s.k. stimulerad emission vilket skulle resultera i en kiselbaserad laser.

En annan del av avhandlingen berör tillverkning, karakterisering och användning av s.k. germanium kvantprickar som kan erhållas på kiselytor om man belägger ytan med ett antal atomlager av germanium. Dessa öar kan sedan begravas av kisel och får intressanta optiska egenskaper. Studier har gjorts av hur stor interdiffusionen är av kisel och germanium i kvantprickarna vilket påverkar vilka ljusvåglängder som kan absorberas eller emitteras av kvantprickarna. Med hjälp av sådana kvantprickar har detektorer för våglängder 1,3-1,5 μm tillverkats och karakteriserats.

Då även tenn/kisel kvantprickar har rapporterats ge användbar absorption av vissa våglängder har en studie genomförts av tillverkning och karakterisering av material som innehåller sådana kvantprickar.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2008. 106 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1213
National Category
Physical Sciences
urn:nbn:se:liu:diva-12575 (URN)978-91-7393-798-6 (ISBN)
Public defence
2008-09-25, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2009-05-04Bibliographically approved

Open Access in DiVA

fulltext(441 kB)154 downloads
File information
File name FULLTEXT01.pdfFile size 441 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textLink to Ph.D. Thesis

Search in DiVA

By author/editor
Karim, AmirDu, Chun-XiaHansson , Göran
By organisation
Department of Physics, Chemistry and BiologyThe Institute of TechnologySurface and Semiconductor Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 154 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 54 hits
ReferencesLink to record
Permanent link

Direct link