Open this publication in new window or tab >>Show others...
2000 (English)In: Applied Physics Letters, ISSN 0003-6951, E-ISSN 1077-3118, Vol. 76, no 2, p. 170-172Article in journal (Refereed) Published
Abstract [en]
Epitaxial AlN thin films have been grown on 6H-SiC substrates by ultra-high-vacuum (UHV) ion-assisted reactive dc magnetron sputtering. The low-energy ion-assisted growth (E-i = 17-27 eV) results in an increasing surface mobility, promoting domain-boundary annihilation and epitaxial growth. Domain widths increased from 42 to 135 nm and strained-layer epitaxy was observed in this energy range. For E-i> 52 eV, an amorphous interfacial layer of AlN was formed on the SiC, which inhibited epitaxial growth. Using UHV condition and very pure nitrogen sputtering gas yielded reduced impurity levels in the films (O: 3.5 x 10(18) cm(-3)). Analysis techniques used in this study are in situ reflection high-energy electron diffraction, secondary-ion-mass spectroscopy, atomic-force microscopy, x-ray diffraction, and cross-section high-resolution electron microscopy. (C) 2000 American Institute of Physics. [S0003-6951(00)01802-7].
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-49923 (URN)
2009-10-112009-10-112021-12-29