As a side-effect of the Covid-19 pandemic, significant decreases in medical procedures for noncommunicable diseases have been observed. This calls for a decision support assisting in the analysis of opportunities to relocate procedures among hospitals in an efficient or, preferably, optimal manner. In the current paper we formulate corresponding decision problems and develop linear (mixed integer) programming models for them. Since solving mixed integer programming problems is NP-complete, we verify experimentally their usefulness using real-world data about urological procedures. We show that even for large models, with millions of variables, the problems’ instances are solved in perfectly acceptable time.
Funding: Polish Ministry of Science and Higher EducationMinistry of Science and Higher Education, Poland