Recent improvements in vehicle-to-everything (V2X) communication and onboard computing power have enabled the development of control algorithms that jointly optimize the vehicle velocity and powertrain control in Connected and Automated Vehicles (CAVs), commonly referred to as the Eco-Driving problem. This paper presents a novel and computationally efficient algorithm to optimize the velocity planning and energy management in a CAV with a hybrid electric powertrain. The Eco-Driving problem is formulated as a dynamic, constrained optimization problem in the spatial domain, where information about the upcoming speed limits and road topography is assumed known. This problem is solved by embedding an Equivalent Consumption Minimization Strategy (ECMS) into a Dynamic Programming (DP) optimization to obtain a sub-optimal solution that provides results close to the global optimum at a fraction of the computational cost. Further, a multi-layer hierarchical control architecture is proposed as a path to a causal, real-time implementation. The DP-ECMS algorithm is converted into a Model Predictive Control (MPC) framework by using principles of Approximate Dynamic Programming (ADP). This causal implementation is finally benchmarked to a global optimal solution obtained with DP for different scenarios.
Funding Agencies|United States Department of Energy, Advanced Research Projects Agency - Energy [2021]