liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modellering av åtgärders effekter under pandemin kan ifrågasättas: Forskarna vid Imperial College ändrade sina antaganden så att slutsatsen att nedstängning var mest effektiv bibehölls [Modeling the effect of non-pharmaceutical interventions during the corona pandemic]
Linköping University, Department of Electrical Engineering, Automatic Control. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-3270-171X
Linköping University, Department of Health, Medicine and Caring Sciences, Division of Society and Health. Linköping University, Faculty of Medicine and Health Sciences. Region Östergötland, Regionledningskontoret, Enheten för folkhälsa.ORCID iD: 0000-0001-6049-5402
2021 (Swedish)In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 118Article in journal (Refereed) Published
Abstract [en]

The Imperial College COVID-19 Response Team (ICCRT) concluded in a series of high-profile reports that lockdown had been the most effective non-pharmaceutical intervention in 11 European countries during the initial phase of the corona pandemic. As the ICCRT used a transparent modeling framework, we were able to examine assumptions made in the model. We found that the ICCRT modified the assumptions made in their model as more data became available in a way that maintained the conclusion that lockdown was most effective. These observations suggest that modeling of non-pharmaceutical interventions during an ongoing pandemic must be interpreted with caution as sources of error can be found both in the technical execution of the modeling and the assumptions made. The secondary analysis was made possible only because the ICCRT published their methodology in detail, which is a prerequisite for scientific progress in the pandemic modeling area.

Abstract [sv]

ICCRT (Imperial College COVID-19 Response Team)drog under våren 2020 i en serie rapporter baserade påmodellering slutsatsen att nedstängning var den mesteffektiva samhällsinterventionen mot covid-19-pandemin i Europa.

Då ICCRT använt en transparent modelleringsmetodikmed revisionshistorik kunde vi i efterhand undersökaeffekten av ett antal antaganden som gjordes.

Vi fann att ICCRT ändrat antagandena i sin modell närfler data blev tillgängliga så att slutsatsen att nedstängning var mest effektivt bibehölls.

Tillförlitlig kunskapsutveckling inom pandemimodellering kräver att den metodik som används görs tillgängligoch granskas av andra forskare.

Place, publisher, year, edition, pages
Sveriges Läkarförbund , 2021. Vol. 118
National Category
Probability Theory and Statistics Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
URN: urn:nbn:se:liu:diva-185089PubMedID: 34014556OAI: oai:DiVA.org:liu-185089DiVA, id: diva2:1658770
Available from: 2022-05-17 Created: 2022-05-17 Last updated: 2022-05-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

PubMedArticle full text

Authority records

Gustafsson, FredrikTimpka, Toomas

Search in DiVA

By author/editor
Gustafsson, FredrikTimpka, Toomas
By organisation
Automatic ControlFaculty of Science & EngineeringDivision of Society and HealthFaculty of Medicine and Health SciencesEnheten för folkhälsa
In the same journal
Läkartidningen
Probability Theory and StatisticsPublic Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar

pubmed
urn-nbn

Altmetric score

pubmed
urn-nbn
Total: 73 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf