liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A simple proof of reflexivity and separability of N1,p Sobolev spaces
Dept. of Mathematics and Statistics, Amherst College.ORCID iD: 0000-0002-5223-9748
Dept. of Mathematics, University of Pittsburgh.
Linköping University, Department of Science and Technology, Physics, Electronics and Mathematics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-2083-9180
2023 (English)In: Annales Fennici Mathematici, ISSN 2737-0690, Vol. 48, no 1, p. 255-275Article in journal (Refereed) Published
Abstract [en]

We present an elementary proof of a well-known theorem of Cheeger which states that if a metric-measure space X supports a p-Poincaré inequality, then the N1,p(X) Sobolev space is reflexive and separable whenever p ∈ (1, ∞). We also prove separability of the space when p=1. Our proof is based on a straightforward construction of an equivalent norm on N1,p(X), p ∈ [1, ∞), that is uniformly convex when p ∈ (1, ∞). Finally, we explicitly construct a functional that is pointwise comparable to the minimal p-weak upper gradient, when p ∈ (1, ∞).

Abstract [fi]

Esitämme alkeellisen todistuksen tunnetulle Cheegerin lauseelle, jonka mukaan p-Poincarén epäyhtälön toteuttavan metrisen mitta-avaruuden X Sobolevin avaruudet N1,p(X) ovat refleksiivisiä ja separoituvia kaikilla p ∈ (1,∞). Osoitamme separoituvuuden myös kun p=1. Todistuksemme perustuu kaikilla p ∈ [1,∞) suoraviivaiseen tapaan rakentaa avaruudelle N1,p(X) yhtäpitävä normi, joka on tasaisesti konveksi, kun p ∈ (1,∞). Lopuksi rakennamme eksplisiittisesti funktionaalin, joka on pisteittäin verrannollinen minimaaliseen p-heikkoon ylägradienttiin, kun p ∈ (1,∞).

Place, publisher, year, edition, pages
Helsinki: The Finnish Mathematical Society (SUOMALAINEN TIEDEAKATEMIA) , 2023. Vol. 48, no 1, p. 255-275
Keywords [en]
Sobolev spaces, analysis on metric spaces, Poincaré inequality, uniform convexity
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:liu:diva-187944DOI: 10.54330/afm.127419ISI: 000944143300013OAI: oai:DiVA.org:liu-187944DiVA, id: diva2:1691984
Note

Funding: NSF [DMS-2055171]

Available from: 2022-08-31 Created: 2022-08-31 Last updated: 2023-04-12

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Malý, Lukáš

Search in DiVA

By author/editor
Alvarado, RyanMalý, Lukáš
By organisation
Physics, Electronics and MathematicsFaculty of Science & Engineering
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf