liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
An Adaptive Strategy for Short-Term Stock Trading using Reinforcement Learning
Linköping University, Department of Electrical Engineering.
2022 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2022. , p. 37
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-188014OAI: oai:DiVA.org:liu-188014DiVA, id: diva2:1692400
External cooperation
Celerus Capital
Subject / course
Applied Mathematics
Examiners
Available from: 2022-09-02 Created: 2022-09-01 Last updated: 2022-09-02Bibliographically approved

Open Access in DiVA

bilaga(758 kB)637 downloads
File information
File name ATTACHMENT01.pdfFile size 758 kBChecksum SHA-512
ac1c681669cf80c9b5e2116c682c9823aa003da772d161cbf811197c7a4f991abd7696ee20f541dcb9848f74c5b29e0993c5e597f1cc55879cd7ec9752ed559e
Type attachmentMimetype application/pdf

By organisation
Department of Electrical Engineering
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 145 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf