A belief-space planning problem for GNSS-denied areas is studied, where knowledge about the landmark density is used as prior, instead of explicit landmark positions. To get accurate predictions of the future information gained from observations, the probability of detecting landmarks needs to be taken into account in addition to the probability of the existence of landmarks. Furthermore, these probabilities need to be calculated from prior data without knowledge of explicit landmarks. It is shown in this paper how the landmark detection probabilities can be generated for a ground-to-ground LiDAR sensor and integrated in the path-planning problem. Moreover, it is also shown how prior information can be generated for a forest scenario. Lastly, the approach is evaluated in a simulated environment using a real landmark detector applied to a simulated point cloud. Compared to previous approaches, an informative path planner, integrating the proposed approximation, is able to reduce the platform pose uncertainty. This is achieved using only prior aerial data of the environment.
Funding: Swedish Defence Research Agency (FOI) - Swedish Armed Forces