liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analysis of grey-box neural network-based residuals for consistency-based fault diagnosis
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Electrical Engineering, Computer Engineering. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4965-1077
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-0808-052X
2022 (English)Conference paper, Published paper (Refereed)
Abstract [en]

Data-driven fault diagnosis requires training data that is representative of the different operating conditions of the system to capture its behavior. If training data is limited, one solution is to incorporate physical insights into machine learning models to improve their effectiveness. However, while previous works show the usefulness of hybrid approaches for isolation of faults, the impact of training data must be taken into consideration when drawing conclusions from data-driven residuals in a consistency-based diagnosis framework. By giving an understanding of the physical interaction between the signals, a hybrid fault diagnosis approach, can enforce model properties of residual generators to isolate faults that are not represented in training data. The objective of this work is to analyze the impact of limited training data when training neural network-based residual generators. It is also investigated how the use of structural information when selecting the network structure is a solution to limited training data and how to ameliorate the performance of hybrid approaches in face of this challenge.

Place, publisher, year, edition, pages
Elsevier, 2022. Vol. 55, no 6, p. 1-6
Series
IFAC papers online, E-ISSN 2405-8963 ; 6
Keywords [en]
Grey-box recurrent neural networks, structural analysis, fault diagnosis, machine learning, model-based diagnosis, anomaly classification
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-188245DOI: 10.1016/j.ifacol.2022.07.097ISI: 000858756200001OAI: oai:DiVA.org:liu-188245DiVA, id: diva2:1693759
Conference
11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes SAFEPROCESS 2022. Pafos, Cyprus, 8-10 June 2022
Available from: 2022-09-07 Created: 2022-09-07 Last updated: 2022-10-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Krysander, MattiasJung, Daniel

Search in DiVA

By author/editor
Mohammadi, ArmanKrysander, MattiasJung, Daniel
By organisation
Vehicular SystemsFaculty of Science & EngineeringComputer Engineering
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 251 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf