Studies on the Performance Bounds and Design of Current-Steering DACs
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Digital-to-analog converters (DACs) are key building blocks in various applications including radar and wireless communications. With the exponential growth of data throughput in modern communication standards, e.g., fifthgeneration (5G), DACs has been pushed to achieve direct frequency synthesis in the GHz-range with channel bandwidths preferably beyond 1 GHz. Yet, higher frequency synthesis results in augmented power consumption, which can significantly impact the wireless network if multiple DACs are utilized, e.g., in massive multiple-input and multiple-output (MIMO) antenna systems with digital beamforming as well as in end-user’s handheld devices subject to a less prolonged battery life. Moreover, advances in digital signal processing and integrated-circuit fabrication, leading to reduced power consumption and cost as well as more flexibility in software-defined radio transmitters have motivated the displacement of analog/RF circuits to the digital domain. At the same time, driving the DACs to cover the millimeter- Wave (mm-Wave) spectrum, ranging between 30-300 GHz. In this work, high-speed DACs operating in the GHz-range with maintained low power consumption is addressed. The Nyquist-rate DAC is chosen due to its simple conversion approach to facilitate the generation of channel bandwidths in the GHz-range.
A 10-bit current-steering (CS) Nyquist DAC realized in 65-nm CMOS is presented. The design is intended for low-complexity and power consumption while targeting high-speed operation with over 1 GHz channel bandwidth and maintained linearity. The binary-weighted architecture is considered to achieve straightforward digital-to-analog conversion. Next, a theoretical analysis to obtain the energy consumption bounds in CS DACs is presented. The analysis considers the digital, mixed-signal and analog power domains as well as the design corners of noise, speed and linearity. This is validated from reported measurement results in published CS DACs implemented in CMOS technology. Furthermore, design considerations with enhancement techniques are addressed. A digital switching scheme to avoid complementary switching transitions and counteract for timing errors is presented. The proposed scheme improves also the yield in linearity due to stochastic amplitude errors with reduced switching activity. Then, a comparative analysis of latch-drivers commonly implemented in CS DACs is realized. The comparison includes single- and dual-clocked latch-drivers and an alternative solution is proposed to reduce the switching-delay and power consumption.
Abstract [sv]
Digital-till-analogomvandlare (D/A) är viktiga byggstenar i tillämpningar som radar och trådlös kommunikation. Exponentiellt ökande datahastigheter i nya kommunikationsstandarder, som femte generationens mobildatasystem (5G), ställer krav på att kunna skapa direkt frekvenssyntes i GHzområdet med kanalbandbredder företrädesvis över 1 GHz. Användandet av bredbandig frekvenssyntes resulterar i ökad strömförbrukning, vilket avsevärt kan påverka den totala effekförbrukningen i så kallade massiva antennsystem med flera in- och utgångar (MIMO), såväl i basstationen som i den handhållna enheten. Samtidigt leder framstegen inom digital signalbehandling och kretstillverkning till lägre strömförbrukning, minskade kostnader och mer flexibilitet i fråga om mjukvarudefinierade sändtagare vilket motiverar konstruktion av analog/RF-kretsar närmre den digitala domänen. I detta arbete behandlas höghastighetsdataomvandlare som arbetar i GHzområdet med bibehållen låg strömförbrukning. Nyquist-rate D/A väljs på grund av dess enkla omvandlingsmetod vilket underlättar och möjliggör kanalbandbredder i GHz-området.
En tiobitars strömstyrd Nyquist-rate D/A realiserad i 65-nm CMOS presenteras. En binärviktad arkitektur föredras på grund av dess enkla konverteringsmetod. Konstruktion är avsedd för låg komplexitet och strömförbrukning samtidigt som den arbetar i höga frekvenser med över 1 GHz kanalbandbredd och bibehållen linjäritet. Därefter utförs en teoretisk analys för att fastställa de energigränser som definierar möjliga uppnåeliga prestanda. Fundamentala begräsningar vad gäller brus, hastighet och linjäritet tas med i beräkningarna. Både blandade digitala/analoga såväl som de analoga effektdomänerna tas i beaktning. Analysen och dess resultat valideras med hjälp av rapporterade mätresultat från publicerade implementationer i CMOS teknik. Vidare behandlas andra övervägande vad gäller konstruktion och möjliga tekniker för att förbättra prestanda. Varianter av kretsar i gränssnittet mellan analog och digitalt presenteras. Bland annat föreslås lösningar som minimerar komplementära omslag och därmed minimerar onoggrannhet i tidsomslag. Kretsen, tillsammans de analoga delarna, undersöks och det påvisas att olinjära amplitudfel pga av slumpmässiga tillverkningsfel kan undertryckas. Slutligen genomförs en jämförande analys av vippor och drivkretsar av de typer som vanligtvis används i strömstyrda dataomvandlare. Jämförelsen inkluderar enkel- och dubbelklockade vippor och en alternativ lösning som minskar omslagsfördröjning och strömförbrukning föreslås.
Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2022. , p. 101
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2238
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-188672ISBN: 978-91-7929-373-4 (print)ISBN: 978-91-7929-374-1 (electronic)OAI: oai:DiVA.org:liu-188672DiVA, id: diva2:1697422
Public defence
2022-10-12, Planck, F-building, Campus Valla, Linköping, 10:00
Opponent
Supervisors
Note
The doctoral studies presented in this thesis is a collaboration between LiU and Nanyang Technological University (NTU) in Singapore. The thesis is therefore also published at https://doi.org/10.32657/10356/162533 or https://dr.ntu.edu.sg/handle/10356/162533
2022-09-202022-09-202022-11-07Bibliographically approved
List of papers