liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The State of the Art in Sentiment Visualization
Linnéuniversitetet, Institutionen för datavetenskap (DV).ORCID iD: 0000-0002-1907-7820
Lund University, Sweden.ORCID iD: 0000-0002-7240-9003
Linnéuniversitetet, Institutionen för datavetenskap (DV).ORCID iD: 0000-0002-0519-2537
2018 (English)In: Computer graphics forum (Print), ISSN 0167-7055, E-ISSN 1467-8659, Vol. 37, no 1, p. 71-96, article id CGF13217Article in journal (Refereed) Published
Abstract [en]

Visualization of sentiments and opinions extracted from or annotated in texts has become a prominent topic of research over the last decade. From basic pie and bar charts used to illustrate customer reviews to extensive visual analytics systems involving novel representations, sentiment visualization techniques have evolved to deal with complex multidimensional data sets, including temporal, relational, and geospatial aspects. This contribution presents a survey of sentiment visualization techniques based on a detailed categorization. We describe the background of sentiment analysis, introduce a categorization for sentiment visualization techniques that includes 7 groups with 35 categories in total, and discuss 132 techniques from peer-reviewed publications together with an interactive web-based survey browser. Finally, we discuss insights and opportunities for further research in sentiment visualization. We expect this survey to be useful for visualization researchers whose interests include sentiment or other aspects of text data as well as researchers and practitioners from other disciplines in search of efficient visualization techniques applicable to their tasks and data. 

Place, publisher, year, edition, pages
John Wiley & Sons, 2018. Vol. 37, no 1, p. 71-96, article id CGF13217
Keywords [en]
sentiment visualization, text visualization, sentiment analysis, opinion mining
National Category
Computer Sciences
Research subject
Computer Science, Information and software visualization
Identifiers
URN: urn:nbn:se:liu:diva-189519DOI: 10.1111/cgf.13217ISI: 000426151300007Scopus ID: 2-s2.0-85051505723OAI: oai:DiVA.org:liu-189519DiVA, id: diva2:1705915
Funder
Swedish Research Council, 2012-5659Available from: 2022-10-24 Created: 2022-10-24 Last updated: 2022-11-17

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopusFulltext

Authority records

Kucher, KostiantynKerren, Andreas

Search in DiVA

By author/editor
Kucher, KostiantynParadis, CaritaKerren, Andreas
In the same journal
Computer graphics forum (Print)
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 135 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf