Incremental Object Detection via Meta-LearningShow others and affiliations
2022 (English)In: IEEE Transactions on Pattern Analysis and Machine Intelligence, ISSN 0162-8828, E-ISSN 1939-3539, Vol. 44, no 12, p. 9209-9216Article in journal (Refereed) Published
Abstract [en]
In a real-world setting, object instances from new classes can be continuously encountered by object detectors. When existing object detectors are applied to such scenarios, their performance on old classes deteriorates significantly. A few efforts have been reported to address this limitation, all of which apply variants of knowledge distillation to avoid catastrophic forgetting. We note that although distillation helps to retain previous learning, it obstructs fast adaptability to new tasks, which is a critical requirement for incremental learning. In this pursuit, we propose a meta-learning approach that learns to reshape model gradients, such that information across incremental tasks is optimally shared. This ensures a seamless information transfer via a meta-learned gradient preconditioning that minimizes forgetting and maximizes knowledge transfer. In comparison to existing meta-learning methods, our approach is task-agnostic, allows incremental addition of new-classes and scales to high-capacity models for object detection. We evaluate our approach on a variety of incremental learning settings defined on PASCAL-VOC and MS COCO datasets, where our approach performs favourably well against state-of-the-art methods. Code and trained models: https://github.com/JosephKJ/iOD.
Place, publisher, year, edition, pages
IEEE COMPUTER SOC , 2022. Vol. 44, no 12, p. 9209-9216
Keywords [en]
Task analysis; Detectors; Object detection; Training; Proposals; Standards; Feature extraction; Object detection; incremental learning; deep neural networks; meta-learning; gradient preconditioning
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-190191DOI: 10.1109/TPAMI.2021.3124133ISI: 000880661400047PubMedID: 34727027OAI: oai:DiVA.org:liu-190191DiVA, id: diva2:1714189
Note
Funding Agencies|DST through the IMPRINT program [IMP/2019/000250]; TCS PhD Fellowship; VR [2016-05543]
2022-11-292022-11-292022-11-29