liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Molecular Aspects of Transthyretin Amyloid Disease
Linköping University, Department of Physics, Chemistry and Biology, Biochemistry. Linköping University, The Institute of Technology.
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis was made to get a deeper understanding of how chaperones interact with unstable, aggregation prone, misfolded proteins involved in human disease. Over the last two decades, there has been much focus on misfolding diseases within the fields of biochemistry and molecular biotechnology research. It has become obvious that proteins that misfold (as a consequence of a mutation or outer factors), are the cause of many diseases. Molecular chaperones are proteins that have been defined as agents that help other proteins to fold correctly and to prevent aggregation. Their role in the misfolding disease process has been the subject for this thesis.

Transthyretin (TTR) is a protein found in human plasma and in cerebrospinal fluid. It works as a transport protein, transporting thyroxin and holo-retinol binding protein. The structure of TTR consists of four identical subunits connected through hydrogen bonds and hydrophobic interactions. Over 100 point mutations in the TTR gene are associated with amyloidosis often involving peripheral neurodegeneration (familial amyloidotic polyneuropathy (FAP)). Amyloidosis represents a group of diseases leading to extra cellular deposition of fibrillar protein known as amyloid. We used human SH-SY5Y neuroblastoma cells as a model for neurodegeneration. Various conformers of TTR were incubated with the cells for different amounts of time. The experiments showed that early prefibrillar oligomers of TTR induced apoptosis when neuroblastoma cells were exposed to these species whereas mature fibrils were not cytotoxic. We also found increased expression of the molecular chaperone BiP in cells challenged with TTR oligomers.

Point mutations destabilize TTR and result in monomers that are unstable and prone to aggregate. TTR D18G is naturally occurring and the most destabilized TTR mutant found to date. It leads to central nervous system (CNS) amyloidosis. The CNS phenotype is rare for TTR amyloid disease. Most proteins associated with amyloid disease are secreted proteins and secreted proteins must pass the quality control check within the endoplasmic reticulum (ER). BiP is a Hsp70 molecular chaperone situated in the ER. BiP is one of the most important components of the quality control system in the cell. We have used TTR D18G as a model for understanding how an extremely aggregation prone protein is handled by BiP. We have shown that BiP can selectively capture TTR D18G during co-expression in both E. coli and during over expression in human 293T cells and collects the mutant in oligomeric states. We have also shown that degradation of TTR D18G in human 293T cells occurs slower in presence of BiP, that BiP is present in amyloid deposition in human brain and mitigates cytotoxicity of TTR D18G oligomers.

Abstract [sv]

Denna avhandling handlar om proteiner. Särskilt de som inte fungerar som de ska utan har blivit vad man kallar ”felveckade”. Anledningen till att proteiner veckas fel beror ofta (men inte alltid) på mutationer i arvsmassan. Felveckade proteiner kan leda till sjukdomar hos människor och djur (man brukar tala om amyloidsjukdomar), ofta av neurologisk karaktär. Exempel på amyloidsjukdomar är polyneuropati, där perifera nervsystemet är drabbat, vilket leder till begränsad rörelseförmåga och senare till förlamning; och Alzheimer´s sjukdom, där centrala nervsystemet är drabbat och leder till begränsad tankeförmåga och minnesförluster.

Studierna som presenteras i denna avhandling har gått ut på att få en bättre förståelse för hur felveckade proteiner interagerar med det som vi har naturligt i cellerna och som fungerar som skyddande, hjälpande proteiner, så kallade chaperoner.

Transtyretin (TTR) är ett protein som cirkulerar i blodet och transporterar tyroxin (som är ett hormon som bland annat har betydelse för ämnesomsättningen) samt retinol-bindande protein (vitamin A). I TTR genen har man funnit över 100 punktmutationer, vilka har kopplats samman med amyloidsjukdomar, bland annat ”Skellefteåsjukan”. Mutationer i TTR genen leder ofta till att proteinet blir instabilt vilket leder till upplösning av TTR tetrameren till monomerer. Dessa monomerer kan därefter sammanfogas på nytt men denna gång på ett sätt som är farligt för organismen. I denna avhandling har fokus legat på en mutation som kallas TTR D18G, vilken har identifierats i olika delar av världen och leder till en dödlig form av amyloidos i centrala nervsystemet.

Det chaperon som vi har studerat benämns BiP och är beläget i en cellkomponent som kallas för det endoplasmatiska retiklet (ER). I ER finns cellens kontrollsystem i vilket det ses till att felveckade proteiner inte släpps ut utan istället bryts ned.

Denna avhandling har visat att BiP kan fånga upp TTR D18G inuti celler och där samla mutanten i lösliga partiklar som i detta fall är ofarliga för cellen. Avhandligen har också visat att nedbrytningen av TTR D18G sker mycket långsammare när BiP finns i riklig mängd.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press , 2008. , 61 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1179
Keyword [en]
Amyloid, apoptosis, BiP, chaperone, misfolding, oligomer, transthyretin
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
URN: urn:nbn:se:liu:diva-12566ISBN: 978-91-7393-906-5 (print)OAI: oai:DiVA.org:liu-12566DiVA: diva2:1717
Public defence
2008-05-30, Planck, Campus Valla, Linköpings universitet, Linköping, 14:15 (English)
Opponent
Supervisors
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2009-05-15Bibliographically approved
List of papers
1. Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy
Open this publication in new window or tab >>Detection and characterization of aggregates, prefibrillar amyloidogenic oligomers, and protofibrils using fluorescence spectroscopy
2005 (English)In: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 88, no 6, 4200-4212 p.Article in journal (Refereed) Published
Abstract [en]

Transthyretin (TTR) is a protein linked to a number of different amyloid diseases including senile systemic amyloidosis and familial amyloidotic polyneuropathy. The transient nature of oligomeric intermediates of misfolded TTR that later mature into fibrillar aggregates makes them hard to study, and methods to study these species are sparse. In this work we explore a novel pathway for generation of prefibrillar aggregates of TTR, which provides important insight into TTR misfolding. Prefibrillar amyloidogenic oligomers and protofibrils of misfolded TTR were generated in vitro through induction of the molten globule type A-state from acid unfolded TTR through the addition of NaCl. The aggregation process produced fairly monodisperse oligomers (300–500 kD) within 2 h that matured after 20 h into larger spherical clusters (30–50 nm in diameter) and protofibrils as shown by transmission electron microscopy. Further maturation of the aggregates showed shrinkage of the spheres as the fibrils grew in length, suggesting a conformational change of the spheres into more rigid structures. The structural and physicochemical characteristics of the aggregates were investigated using fluorescence, circular dichroism, chemical cross-linking, and transmission electron microscopy. The fluorescent dyes 1-anilinonaphthalene-8-sulfonate (ANS), 4-4-bis-1-phenylamino-8-naphthalene sulfonate (Bis-ANS), 4-(dicyanovinyl)-julolidine (DCVJ), and thioflavin T (ThT) were employed in both static and kinetic assays to characterize these oligomeric and protofibrillar states using both steady-state and time-resolved fluorescence techniques. DCVJ, a molecular rotor, was employed for the first time for studies of an amyloidogenic process and is shown useful for detection of the early steps of the oligomerization process. DCVJ bound to the early prefibrillar oligomers (300–500 kD) with an apparent dissociation constant of 1.6 mM, which was slightly better than for ThT (6.8 mM). Time-resolved fluorescence anisotropy decay of ANS was shown to be a useful tool for giving further structural and kinetic information of the oligomeric aggregates. ThT dramatically increases its fluorescence quantum yield when bound to amyloid fibrils; however, the mechanism behind this property is unknown. Data from this work suggest that unbound ThT is also intrinsically quenched and functions similarly to a molecular rotor, which in combination with its environmental dependence provides a blue shift to the characteristic 482nm wavelength when bound to amyloid fibrils.

National Category
Biophysics
Identifiers
urn:nbn:se:liu:diva-12561 (URN)10.1529/biophysj.104.049700 (DOI)
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2017-12-14Bibliographically approved
2. Prefibrillar Amyloid Aggregates and Cold Shocked Tetrameric Wild Type Transthyretin are Cytotoxic
Open this publication in new window or tab >>Prefibrillar Amyloid Aggregates and Cold Shocked Tetrameric Wild Type Transthyretin are Cytotoxic
Show others...
(English)Manuscript (Other academic)
Abstract [en]

Recent studies suggest that soluble, oligomeric species, which are intermediates in the fibril formation process in amyloid disease, might be the key species in amyloid pathogenesis. Soluble oligomers of TTR were produced by kinetic sampling from a TTR fibrillation reaction (A-state TTR, pH 2, 100 mM NaCl). The reaction was terminated at different time points, and different states in the aggregation process were captured and analyzed to elucidate the oligomer properties followed by sampling for cytotoxicity using exposure towards human SH-SYY5 neuroblastoma cells. Employing ThT fluorescence, time-resolved fluorescence anisotropy of pyrenelabeled TTR, chemical cross-linking and electron microscopy we demonstrated that early formed oligomers from A-state TTR were soluble and comprised on the average 20-30 TTR monomers. Early oligomers were highly cytotoxic and induced apoptosis as indicated by the MTT assay and caspase-3 activation, whereas mature fibrils were non-toxic. We also indicate an activated unfolded protein response in cells exposed to oligomers as evidenced by an increased expression of the endoplasmic reticulum located molecular chaperone BiP. Following exposure, BiP appeared relocalized to the cytoplasm. Surprisingly, we also found that native tetrameric TTR purified and stored under cold conditions (4 °C) was highly cytotoxic. The effect could be partially restored by increasing the temperature of the protein. The molecular basis for this pathogenicity is rather unclear but likely stems from previously reported increased sensitivity towards dissociation and denaturation of TTR at low temperatures and opens the possibility that rearranged tetrameric TTR is cytotoxic towards neuroblastoma cells.

Keyword
Amyloid, apoptosis, transthyretin, chaperone, misfolding, oligomer
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-12562 (URN)
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2010-01-14
3. Retention of Misfolded Mutant Transthyretin by the Chaperone BiP/GRP78 Mitigates Amyloidogenesi
Open this publication in new window or tab >>Retention of Misfolded Mutant Transthyretin by the Chaperone BiP/GRP78 Mitigates Amyloidogenesi
Show others...
2006 (English)In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 356, no 2, 469-482 p.Article in journal (Refereed) Published
Abstract [en]

Carriers of the D18G transthyretin (TTR) mutation display an unusual central nervous system (CNS) phenotype with late onset of disease. D18G TTR is monomeric and highly prone to misfold and aggregate even at physiological conditions. Extremely low levels of mutant protein circulate both in human serum and cerebrospinal fluid, indicating impaired secretion of D18G TTR. Recent data show efficient selective ER-associated degradation (ERAD) of D18G TTR. One essential component of the ER-assisted folding machinery is the molecular chaperone BiP. Co-expression of BiP and D18G TTR, or BiP and wild-type (wt) TTR, or mutants A25T TTR and L55P TTR in Escherichia coli showed that only D18G TTR was significantly captured by BiP. Negligible capture of wt TTR and L55P TTR was seen and a sixfold smaller amount of A25T TTR bound to BiP compared to D18G TTR. These data correlate very well with thermodynamic and kinetic stability of the TTR variants, indicating that folding efficiency is inversely correlated to BiP capture. The complexes between BiP and D18G TTR were stable and could be isolated through affinity chromatography. Analytical ultracentrifugation and size-exclusion chromatography revealed that D18G TTR and BiP formed a mixture of 1:1 complexes and large soluble oligomers. The stoichiometry of captured D18G TTR versus BiP increased with increasing size of the oligomers. This indicates that BiP either worked as a molecular shepherd collecting the aggregation-prone mutant into stable oligomers or that BiP could bind to oligomers formed from misfolded mutant protein. Sequence analysis of bound TTR peptides to BiP revealed a bound sequence corresponding to residues 88–103 of TTR, comprising β-strand F in the folded TTR monomer constituting part of the hydrogen bonding tetramer interface in native TTR. The F-strand has also been suggested as a possible elongation region of amyloid fibrils, implicating how substoichiomeric amounts of BiP could sequester prefibrillar amyloidogenic oligomers through binding to this part of TTR. BiP binding to D18G TTR was abolished by addition of ATP. The released D18G TTR completely misfolded into amyloid aggregates as shown by ThT fluorescence and Congo red binding.

Keyword
BiP; misfolding; intermediate; amyloid; oligomer
National Category
Biochemistry and Molecular Biology
Identifiers
urn:nbn:se:liu:diva-12563 (URN)10.1016/j.jmb.2005.11.051 (DOI)
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2017-12-14
4. BiP can function as a molecular shepherd that alleviates oligomer toxicity and amass amyloid
Open this publication in new window or tab >>BiP can function as a molecular shepherd that alleviates oligomer toxicity and amass amyloid
Show others...
(English)Manuscript (Other academic)
Abstract [en]

A wide range of diseases are linked to protein misfolding and aggregation inside and outside the cell. It is of utmost interest to understand how the molecular chaperone machinery of the endoplasmic reticulum (ER) handles the expression of highly amyloidogenic proteins. We explored the hypothesis that the ER located Hsp70 molecular chaperone BiP plays a crucial role in amyloid diseases and influence the misfolding process and disease progression. We used the transthyretin mutant TTR D18G associated with an unusual central nervous system amyloid disease as the model substrate because it represents the most destabilized and degraded TTR variant known. Over-expression of TTR D18G in concert with BiP showed that BiP selectively recognize the amyloidogenic mutant protein as compared to wild type in human cells and collects the mutant in stable intermediate size oligomers within the ER. Furthermore, whereas TTR D18G was found to be highly cytotoxic to neuroblastoma cells, TTR D18G preincubated with BiP was non-toxic indicating that BiP protects the cell from cytotoxicity. BiP was also found present in cerebellar amyloid deposits and co-localized with TTR in a TTR D18G patient suggesting that the complex can be found in the extracellular space. We promote a fundamental role of BiP in misfolding diseases and describe a molecular shepharding function of BiP in sequestrating amyloidogenic protein molecules in benign oligomeric states.

Keyword
Amyloid, transthyretin, chaperone, misfolding, oligomer, cytotoxicity
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Identifiers
urn:nbn:se:liu:diva-12564 (URN)
Available from: 2008-09-15 Created: 2008-09-15 Last updated: 2014-04-08

Open Access in DiVA

fulltext(1775 kB)1150 downloads
File information
File name FULLTEXT01.pdfFile size 1775 kBChecksum SHA-512
67be6ec218c35dcff0812c634ce4c33bdba50b5e0738ea2fb6ecb17b2f8a6c29a410b90a4454412449d718ac4d92341c8ae1f7b01b3c4b4ae954468ef7ebabb7
Type fulltextMimetype application/pdf
cover(382 kB)82 downloads
File information
File name COVER01.pdfFile size 382 kBChecksum SHA-512
a02c35e49e6a02196feedbd310927ba29fa2b84d97f7b3349e75539d48faf0b0fb3f32cab9eef5a7a0d21843450e421f5c48e8b7d5c29a57b88c4684fab04a52
Type coverMimetype application/pdf

Authority records BETA

Sörgjerd, Karin

Search in DiVA

By author/editor
Sörgjerd, Karin
By organisation
BiochemistryThe Institute of Technology
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)

Search outside of DiVA

GoogleGoogle Scholar
Total: 1150 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1735 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf