liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target
Linköping University, Department of Physics, Chemistry and Biology, Plasma and Coating Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0003-1785-0864
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Department of Materials Chemistry, The Ångström Laboratory, Uppsala University, Uppsala, Sweden.
Show others and affiliations
2006 (English)In: Thin Solid Films, ISSN 0040-6090, E-ISSN 1879-2731, Vol. 515, no 4, 1731-1736 p.Article in journal (Refereed) Published
Abstract [en]

We have deposited Ti-Si-C thin films using high-power impulse magnetron sputtering (HIPIMS) from a Ti3SiC2 compound target. The as-deposited films were composite materials with TiC as the main crystalline constituent. X-ray diffraction and photoelectron spectroscopy indicated that they also contained amorphous SiC, and for films deposited on inclined substrates, crystalline Ti5Si3Cx. The film morphology was dense and flat, while films deposited with dc magnetron sputtering under comparable conditions were rough and porous. Due to the high degree of ionization of the sputtered species obtained in HIPIMS, it is possible to control the film composition, in particular the C content, by tuning the substrate inclination angle, the Ar process pressure, and the bias voltage.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi , 2006. Vol. 515, no 4, 1731-1736 p.
Keyword [en]
HIPIMS, Titanium silicon carbide
National Category
Physical Sciences
URN: urn:nbn:se:liu:diva-10437DOI: 10.1016/j.tsf.2006.06.015ISI: 000242931900079OAI: diva2:17177

Original publication: J. Alami, P. Eklund, J. Emmerlich, O. Wilhelmsson, U. Jansson, H. Högberg, L. Hultman, & U. Helmersson, High-power impulse magnetron sputtering of Ti-Si-C thin films from a Ti3SiC2 compound target, 2006, Thin Solid Films, (515), 4, 1731-1736. Copyright: Elsevier B.V.,

Available from: 2007-12-14 Created: 2007-12-14 Last updated: 2016-08-31Bibliographically approved
In thesis
1. Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering
Open this publication in new window or tab >>Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The present thesis addresses two research areas related to film growth in a highly ionized magnetron sputtering system: plasma characterization, and thin film growth and analysis. The deposition technique used is called high power pulsed magnetron sputtering (HPPMS). Characteristic for this technique are high energy pulses (a few Joules) of length 50-100 µs that are applied to the target (cathode) with a duty time of less than 1 % of the total pulse time. This results in a high electron density in the discharge (>1x1019 m-3) and leads to an increase of the ionization fraction of the sputtered material reaching up to 70 % for Cu.

In this work the spatial and temporal evolution of the plasma parameters, including the electron energy distribution function (EEDF), the electron density and the electron temperature are determined using electrostatic Langmuir probes. Electron temperature measurements reveal a low effective temperature of 2-3 eV. The degree of ionization in the HPPMS discharge is explained in light of the self-sputtering yield of the target material. A simple model is therefore provided in order to compare the sputtering yield in HPPMS and that in dc magnetron sputtering (dcMS) for the same average power.

Thin Ta films are grown using HPPMS and dcMS and their properties are studied. It is shown that enhanced microstructure and morphology of the deposited films is achieved by HPPMS. The Ta films are also deposited at a number of substrate inclination angles ranging from 0o (i.e., facing the target surface) up to 180 o (i.e., facing away from the target). Deposition rate measurements performed at all inclination angles for both techniques, reveal that growth made using HPPMS resulted in an improved film thickness at higher inclination. Furthermore, the high ionization of the Ta atoms in HPPMS discharge is found to allow for phase tailoring of the deposited films at all inclination angles by applying a bias voltage to the substrate. Finally, highly ionized magnetron sputtering of a compound MAX-phase material (Ti3SiC2) is performed, demonstrating that the HPPMS discharge could also be used to tailor the composition of the growing Ti-Si-C films.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2005
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 948
Highly ionized pulsed magnetron sputtering, HPPMS, HPPIMS, thin film, plasma analysis, Langmuir probe
National Category
Engineering and Technology
urn:nbn:se:liu:diva-4147 (URN)91-85299-40-5 (ISBN)
Public defence
2005-06-03, 10:15 (English)
On the day of the public defence of the doctoral thesis, the status of articles III and IV was Submitted. The titles of papers VI and VII changed between their manuscript forms and when they were published.Available from: 2005-10-25 Created: 2005-10-25 Last updated: 2013-10-30
2. Multifunctional nanostructured Ti-Si-C thin films
Open this publication in new window or tab >>Multifunctional nanostructured Ti-Si-C thin films
2007 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In this Thesis, I have investigated multifunctional nanostructured Ti-Si-C thin films synthesized by magnetron sputtering in the substrate-temperature range from room temperature to 900 °C. The studies cover high-temperature growth of Ti3SiC2 and Ti4SiC3, low-temperature growth of Ti-Si-C nanocomposites, and Ti-Si-C-based multi¬layers, as well as their electrical, mechanical, and thermal-stability properties. Ti3SiC2 and Ti4SiC3 were synthesized homoepitaxially onto bulk Ti3SiC2 from individual sputtering targets and heteroepitaxially onto Al2O3(0001) substrates from a Ti3SiC2 target at substrate temperatures of 700 – 900 °C. In the latter case, the film composition exhibits excess C compared to the nominal target composition due to differences between species in angular and energy distribution and gas-phase scattering processes. Ti buffering is shown to compensate for this excess C. The electrical-resistivity values of Ti3SiC2 and Ti4SiC3 thin films were measured to 21-32 uOhmcm and ~50 uOhmcm, respectively. The good conductivity is because the presence of Si layers enhances the relative strength of the metallic Ti-Ti bonds. The higher density of Si layers in Ti3SiC2 than in Ti4SiC3 explains why Ti3SiC2 is the better conductor of the two. Ti3SiC2 thin films are shown to be thermally stable up to 1000 – 1100 °C. Annealing at higher temperature results in decomposition of Ti3SiC2 by Si out-diffusion to the surface with subsequent evaporation. Above 1200 °C, TiCx layers recrystallized. Nanocomposites comprising nanocrystalline (nc-)TiC in an amorphous (a-)SiC matrix phase were deposited at substrate temperatures in the range 100 – 300 °C. These nc-TiC/a-SiC films exhibit low contact resistance in electrical contacts and a ductile deformation behavior due to rotation and gliding of nc-TiC grains in the matrix. The ductile mechanical properties of nc-TiC/a-SiC are actually more similar to those of Ti3SiC2, which is very ductile due to kinking and delamination, than to those of the brittle TiC. Epitaxial TiC/SiC multilayers deposited at ~550 °C were shown to contain cubic SiC layers up to a thickness of ~2 nm. Thicker SiC layers gives a-SiC due to the corresponding increase in interfacial strain energy leading to loss of coherent-layer growth. Nanoindentation of epitaxial Ti3SiC2/TiC0.67 nanolaminates showed inhibition of kink-band formation in Ti3SiC2, as the lamination with the less ductile TiC effectively hindered this mechanism.

Abstract [sv]

Materialteknik har alltid varit en central del av människans historia, och en förutsättning för utvecklingen av civilisationen. Dess betydelse märks inte minst på hur vi uppkallat historiska perioder efter vilka material som använts: stenåldern, bronsåldern och järnåldern (kiselåldern?). Modern materialvetenskap däremot handlar inte bara om att tillverka och utveckla material, utan även om att förstå sambandet mellan tillverknings¬processen, materialets struktur och dess egenskaper – samt hur denna förståelse kan användas för att designa material. I min avhandling sammanstrålar tre begrepp inom materialvetenskap, (multi-)funktionalitet, nanoteknik (nanostruktur) och tunna filmer.

Inom materialvetenskap och materialteknik skiljer man på begreppen strukturmaterial, som väljs ut för sin förmåga att bära en last (t.ex. byggmaterial) och funktionella material, där det intressanta är materialets funktion, t.ex. elektriska, magnetiska, optiska eller vissa mekaniska egenskaper. Multifunktionella material är material som är utvalda eller designade för att ha flera funktioner – exempelvis god elektrisk ledningsförmåga, nötningsmot-stånd och korrosionsmotstånd.

Nanoteknik handlar om material (strukturer, maskiner, etc…) där åtminstone någon dimension är på nanometerskalan (nanometer = miljarddels meter). Men det räcker inte med att enbart vara liten – nanoteknik betyder att man får nya funktioner tack vare storleken. I samhällsdebatten beskrivs nanoteknik ofta utifrån visioner om möjliga framtida kvantdatorer, molekylfabriker, medicinska ”cell-robotar”, och så vidare; det finns också negativa visioner som den om självkopierande nanorobotar som tar över världen och ut-rotar allt liv. Men om man ignorerar dessa långsiktiga och/eller långsökta visioner, så är det viktigt att inse att nanotekniken finns i våra vardagsliv redan idag, och det är framför allt som materialteknik som nanotekniken har lämnat snackstadiet och blivit verkstad. Många kommersiella produkter idag innehåller nanostrukturerade material, det vill säga material där nya funktioner uppnås genom att designa materialets struktur på nanonivå.

Anledningen att man ofta vill belägga en yta med ett lager av något annat är att ytbeläggningen förändrar – förhoppningsvis till det bättre! – egenskaperna hos det belagda objektet. Det är därför man målar huset eller lackerar köksbordet. Med tunna filmer menar man ytbeläggningar tunnare än någon eller några mikrometer (miljondels meter). Antireflexbehandlingen på glasögon och teflonet i stekpannan är några exempel från vardagen.

Processen jag använt kallas sputtring (egentligen heter det katodförstoftning på svenska, men ingen använder det ordet!), och äger rum i en vakuumkammare där trycket kan vara så lågt som en biljondel av atmosfärtrycket. Där placerar man det material man vill göra en tunnfilm av. Sedan släpper man in en gas, oftast en ädelgas som argon, som får bilda ett plasma, det vill säga en gas som mest består av laddade partiklar (joner). Argonjonerna accelereras med hög energi och får bombardera materialet; då slås atomer av ämnet ut och sprids i vakuumkammaren. De kan sedan kondensera på den yta man vill belägga och bilda en tunnfilm. En stor fördel med denna ”biljard på atomnivå” är att man har väldigt stora möjligheter att styra hur filmen bildas och växer, med andra ord går det att designa filmens struktur och i förlängningen dess egenskaper.

Det material jag studerat är titankiselkarbid, alltså ett ternärt material – det består av tre grundämnen (titan, kisel och kol). Varför ett så krångligt val – hade det inte varit mycket enklare att bara använda ett eller två grundämnen? Visst hade det varit enklare – men också tråkigare! Det blir visserligen mer komplicerat av att lägga till fler grundämnen, men flexibiliteten och designmöjligheterna ökar i motsvarande grad. I titankiselkarbid¬systemet kan jag tillverka en rad olika typer nanostrukturerade material, där de viktigaste kanske är Ti3SiC2, vars fascinerande struktur påminner om ett laminatgolv på nanonivå, och nanokompositer, med små titankarbidkristaller inbakade i amorft material. Båda dessa har unika egenskaper tack vare sin nanostruktur – de är hyfsade elektriska ledare, lagom hårda utan att vara för hårda, inte spröda, korrosionsbeständiga, och så vidare.

Kort sagt, de är Multifunktionella nanostrukturerade tunna filmer av titankiselkarbid!

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2007
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1087
National Category
Other Engineering and Technologies not elsewhere specified
urn:nbn:se:liu:diva-8860 (URN)978-91-85715-31-2 (ISBN)
Public defence
2007-04-20, Planck, F, 10:15 (English)
Available from: 2007-05-14 Created: 2007-05-14 Last updated: 2016-08-31

Open Access in DiVA

fulltext(188 kB)1366 downloads
File information
File name FULLTEXT01.pdfFile size 188 kBChecksum MD5
Type fulltextMimetype application/pdf

Other links

Publisher's full textLink to Ph.D. thesis (Alami)Link to Ph.D. thesis (Eklund)

Search in DiVA

By author/editor
Alami, JonesEklund, PerEmmerlich, JensHögberg, HansHultman, LarsHelmersson, Ulf
By organisation
Plasma and Coating PhysicsThe Institute of TechnologyThin Film Physics
In the same journal
Thin Solid Films
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 1366 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 557 hits
ReferencesLink to record
Permanent link

Direct link