liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Burst Image Restoration and Enhancement
Mohamed Bin Zayed Univ AI, U Arab Emirates.
Incept Inst AI, U Arab Emirates.
Mohamed Bin Zayed Univ AI, U Arab Emirates; Australian Natl Univ, Australia.
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, Faculty of Science & Engineering. Mohamed Bin Zayed Univ AI, U Arab Emirates.
Show others and affiliations
2022 (English)In: 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), IEEE COMPUTER SOC , 2022, p. 5749-5758Conference paper, Published paper (Refereed)
Abstract [en]

Modern handheld devices can acquire burst image sequence in a quick succession. However, the individual acquired frames suffer from multiple degradations and are misaligned due to camera shake and object motions. The goal of Burst Image Restoration is to effectively combine complimentary cues across multiple burst frames to generate high-quality outputs. Towards this goal, we develop a novel approach by solely focusing on the effective information exchange between burst frames, such that the degradations get filtered out while the actual scene details are preserved and enhanced. Our central idea is to create a set of pseudo-burst features that combine complimentary information from all the input burst frames to seamlessly exchange information. However, the pseudo-burst cannot be successfully created unless the individual burst frames are properly aligned to discount interframe movements. Therefore, our approach initially extracts pre-processed features from each burst frame and matches them using an edge-boosting burst alignment module. The pseudo-burst features are then created and enriched using multi-scale contextual information. Our final step is to adaptively aggregate information from the pseudo-burst features to progressively increase resolution in multiple stages while merging the pseudo-burst features. In comparison to existing works that usually follow a late fusion scheme with single-stage upsampling, our approach performs favorably, delivering state-of-the-art performance on burst super-resolution, burst low-light image enhancement and burst denoising tasks. The source code and pre-trained models are available at https://github.com/akshaydudhane16/BIPNet.

Place, publisher, year, edition, pages
IEEE COMPUTER SOC , 2022. p. 5749-5758
Series
IEEE Conference on Computer Vision and Pattern Recognition, ISSN 1063-6919
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-190653DOI: 10.1109/CVPR52688.2022.00567ISI: 000867754206003ISBN: 9781665469463 (electronic)ISBN: 9781665469470 (print)OAI: oai:DiVA.org:liu-190653DiVA, id: diva2:1720837
Conference
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, jun 18-24, 2022
Note

Funding Agencies|NSF CAREER Grant [1149783]

Available from: 2022-12-20 Created: 2022-12-20 Last updated: 2022-12-20

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Khan, Fahad
By organisation
Computer VisionFaculty of Science & Engineering
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf