Burst Image Restoration and EnhancementShow others and affiliations
2022 (English)In: 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), IEEE COMPUTER SOC , 2022, p. 5749-5758Conference paper, Published paper (Refereed)
Abstract [en]
Modern handheld devices can acquire burst image sequence in a quick succession. However, the individual acquired frames suffer from multiple degradations and are misaligned due to camera shake and object motions. The goal of Burst Image Restoration is to effectively combine complimentary cues across multiple burst frames to generate high-quality outputs. Towards this goal, we develop a novel approach by solely focusing on the effective information exchange between burst frames, such that the degradations get filtered out while the actual scene details are preserved and enhanced. Our central idea is to create a set of pseudo-burst features that combine complimentary information from all the input burst frames to seamlessly exchange information. However, the pseudo-burst cannot be successfully created unless the individual burst frames are properly aligned to discount interframe movements. Therefore, our approach initially extracts pre-processed features from each burst frame and matches them using an edge-boosting burst alignment module. The pseudo-burst features are then created and enriched using multi-scale contextual information. Our final step is to adaptively aggregate information from the pseudo-burst features to progressively increase resolution in multiple stages while merging the pseudo-burst features. In comparison to existing works that usually follow a late fusion scheme with single-stage upsampling, our approach performs favorably, delivering state-of-the-art performance on burst super-resolution, burst low-light image enhancement and burst denoising tasks. The source code and pre-trained models are available at https://github.com/akshaydudhane16/BIPNet.
Place, publisher, year, edition, pages
IEEE COMPUTER SOC , 2022. p. 5749-5758
Series
IEEE Conference on Computer Vision and Pattern Recognition, ISSN 1063-6919
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-190653DOI: 10.1109/CVPR52688.2022.00567ISI: 000867754206003ISBN: 9781665469463 (electronic)ISBN: 9781665469470 (print)OAI: oai:DiVA.org:liu-190653DiVA, id: diva2:1720837
Conference
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, jun 18-24, 2022
Note
Funding Agencies|NSF CAREER Grant [1149783]
2022-12-202022-12-202022-12-20