The electronic structure of a single domain Si(110)-(16×2) surface has been investigated by high-resolution angle-resolved photoelectron spectroscopy and scanning tunneling microscopy (STM). Four semiconducting surface states with flat dispersions, whose binding energies are 0.2, 0.4, 0.75, and 1.0 eV, were observed in the bulk band gap and more than six states were observed within the projected bulk band at binding energies less than 5.2 eV. The origins of the four surface states and of one state at a binding energy of approximately 1.5 eV at the Γ̅ point are discussed based on the local density of states mappings obtained by STM. Further, a structural model that can explain all these five states is proposed.