liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of ring torsion on the intrachain mobility in conjugated polymers
Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Computational Physics. Linköping University, The Institute of Technology.
2007 (English)In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 75, no 10, 104304- p.Article in journal (Refereed) Published
Abstract [en]

Wehave developed a fully three-dimensional model based on the solutionof the time-dependent Schrödinger equation for studies of polaron mobilityin twisted polymer chains. Variations in ring torsion angles alonga conjugated polymer chain are shown to have a strongeffect on the intrachain charge carrier mobility. An increase inring torsion between two neighboring monomers can cause electron localizationand then result in a transition of the type oftransport from adiabatic polaron drift to nonadiabatic polaron hopping. Inparticular, we show the sensitivity for such a transition inthe case of random variations in the ring torsion anglesalong a poly(phenylene vinylene) chain. The effective energy barrier associatedwith the change in torsion angle also depends on theapplied electric-field strength, and by increasing the field strength atransition back to adiabatic transport can be obtained.

Place, publisher, year, edition, pages
2007. Vol. 75, no 10, 104304- p.
Keyword [en]
electron-lattice dynamics, carrier mobility, localised states, polarons, hopping conduction
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-16943DOI: 10.1103/PhysRevB.75.104304OAI: oai:DiVA.org:liu-16943DiVA: diva2:174888
Projects
Center of Organic Electronics (COE)
Note

Original Publication: Magnus Hultell and Sven Stafström, Impact of ring torsion on the intrachain mobility in conjugated polymers, 2008, Physical Review B. Condensed Matter and Materials Physics, (75), 10, 104304. http://dx.doi.org/10.1103/PhysRevB.75.104304 Copyright: American Physical Society http://www.aps.org/

Available from: 2009-02-25 Created: 2009-02-25 Last updated: 2017-12-13Bibliographically approved
In thesis
1. Electron-lattice dynamics in π-conjugated systems
Open this publication in new window or tab >>Electron-lattice dynamics in π-conjugated systems
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The work presented in this thesis concerns the dynamics in π-conjugated hydrocarbon systems. Due to the molecular bonding structure of these systems there exists a coupling between the electronic system and the phonons of the lattice. If this interaction, which is referred to as the electron-phonon (e-ph) coupling, is sufficiently strong it may cause externally introduced charge carriers to self-localize in a polarization cloud of lattice distortions. These quasi-particles are, if singly charged, termed polarons, the localization length of which, aside from the e-ph coupling strength, also depend upon the structural and energetic disorder of the system. In disordered systems localization is strong and transport is facilitated by nonadiabatic hopping of charge carriers from one localized state to the next, whereas in well-ordered systems, where extended states are formed, adiabatic transport models apply.Despite great academic efforts a unified model for charge transport in π-conjugated systems is still lacking and further investigations are necessary to uncover the basic physics at hand in these systems. The call for such efforts has been the main guidelines for the work presented in this thesis and are related to the topics of papers I-IV. In order to capture the coupled electron-lattice dynamics, we use a methodological approach where we obtain the time-dependence of the electronic degrees of freedom from the solutions to the time-dependent Schrödinger equation and determine the ionic motion in the evolving charge density distribution by simultaneously solving the lattice equation of motion within the potential field of the ions. The Hamiltonian used to describe the system is derived from an extension of the famous Su-Schrieffer-Heeger (SSH) model extended to three-dimensional systems.In papers I-III we explore the impact of phenylene ring torsion on delocalization and transport properties in poly(para-phenylene vinylene) (PPV). The physics that we are particularly interested in relates to the reduced electron transfer integral strength across the interconnection between the phenylene rings and the vinylene groups upon ring torsion. Keeping this in mind, we demonstrate in paper I the impact of static ring torsion on intrachain mobility and provide a detailed analysis of the influence of the potential barriers (due to consecutive ring torsion) on the nature of charge carrier propagation. In paper II we extend our initial approach to include also the dynamics of ring torsion. We show that without any externally applied electric field, this type of dynamics is the dominant property controlling intrachain propagation, but that when an external electric field is applied, charge carriers may traverse the potential barriers through a process that involves nonadiabatic effects and a temporary delocalization of the polaron state. Finally, in paper III we study the impact of the lattice dynamics on the electron localization properties in PPV and show that the phenylene ring torsion modes couples strongly to the electronic wave function which gives rise to electron localization at room temperature.In papers IV and V we focus on the dynamics of molecular crystals using a stack of pentacene molecules in the single crystal configuration as a model system, but study, in paper IV, the transport as a function of the intermolecular interaction strength, J. We observe a smooth transition from a nonadiabatic to an adiabatic polaron drift process over the regime 20<J<120 meV. For intermolecular interaction strengths above J≈120 meV the polaron is no longer stable and transport becomes band-like. In paper V, finally, we study the internal conversion processes in these systems, which is the dominant relaxation channel from higher lying states. This process involves the transfer of energy from the electronic system to the lattice. Our results show that this process is strongly nonadiabatic and that the relaxation time associated with large energy excitations is limited by transitions made between states of different bands.

Abstract [sv]

I dagens samhälle är elektroniken ett allt viktigare och större inslag i vår vardag. Vi ser på TV, talar i mobiltelefoner, och arbetar på datorer. I hjärtat av denna teknologi finner vi diskreta komponenter och integrerade kretsar utformade främst för att styra strömmen av elektroner genom halvledande material. Traditionellt sett har kisel eller olika former av legeringar använts som det aktiva materialet i dessa komponenter och kretsar, men under de senaste 20 åren har såväl transistorer som solceller och lysdioder realiserats där det aktiva materialet är organiskt, d.v.s., kolbaserat.Vi befinner oss för tillfället mitt uppe i det kommersiella genombrottet för organisk elektronik. Redan idag säljs många MP3-spelare och mobiltelefoner med små skärmar där varje pixelelementen utgörs av organiska ljusemitterande dioder (OLEDs), men teknologin håller redan på att introduceras i mer storskaliga produkter som datorskärmar och TV-apparater som därigenom skulle kunna göras energieffektivare, tunnare, flexiblare och på sikt också billigare. Andra tekniska tillämpningsområden för organisk elektronik som förutspås en lysande framtid är RFID-märkning, organiska solceller, och elektronik tryckt på papper, men även smarta textiler och bioelektronik har stor utvecklingspotential.Den kanske största utmaningen kvarstår dock, att skapa elektroniska kretsar och komponenter uppbyggda kring enskilda molekyler, s.k. molekylär elektronik. Mycket snart närmar vi oss den fysikaliska gränsen för hur små komponenter som vi kan realisera med traditionella icke-organiska material som kisel och en stor drivkraft bakom forskningen på halvledande organiska material har varit just visionen om molekylär elektronik som inte är mer än några miljondelars milimeter stora. För detta ändamål krävs en mycket nogrann kontroll av tillverkningsprocesserna liksom en detaljförståelse för hur molekylerna leder ström och hur denna förmåga kan manipuleras för att realisera såväl traditionella som nya komponenter.I denna avhandling presenteras en översikt av den fysik som möjliggör ledningsförmåga hos särskilda klasser av organiska material, s.k. π-konjugerade system, samt de forskningsresultat som utgör mitt bidrag till denna disciplin. En av utmaningarna på området är den komplexitet som de organiska materialen erbjuder: laddningsprocesserna påverkas nämligen av en rad olika faktorer såsom laddningstäthet, temperatur, pålagd spänning, samt molekylernas former och inbördes struktur. I detta arbete har jag utifrån en vidareutveckling av existerande modeller genom numeriska datasimuleringar undersökt effekten av de senare tre faktorerna på elektronstrukturen, laddnigstransporten och energidissipation i denna klass av material.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2008. 49 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1215
Keyword
charge transport, electron-lattice dynamics, polaron, adiabatic transport, electron localization, internal conversion
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-12590 (URN)978-91-7393-788-7 (ISBN)
Public defence
2008-10-31, Planck, Fysikhuset, Campus Valla, Linköping University, Linköping, 10:15 (English)
Opponent
Supervisors
Projects
Center of Organic Electronics (COE)
Available from: 2007-03-06 Created: 2008-09-16 Last updated: 2009-03-11Bibliographically approved
2. Electron-Lattice Dynamics in pi-Conjugated Systems
Open this publication in new window or tab >>Electron-Lattice Dynamics in pi-Conjugated Systems
2007 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis we explore in particular the dynamics of a special type of quasi-particle in pi-conjugated materials termed polaron, the origin of which is intimately related to the strong interactions between the electronic and the vibrational degrees of freedom within these systems. In order to conduct such studies with the particular focus of each appended paper, we simultaneously solve the time-dependent Schrödinger equation and the lattice equation of motion with a three-dimensional extension of the famous Su-Schrieffer-Heeger (SSH) model Hamiltonian. In particular, we demonstrate in Paper I the applicability of the method to model transport dynamics in molecular crystals in a region were neither band theory nor perturbative treatments such as the Holstein model and extended Marcus theory apply. In Paper II we expand the model Hamiltonian to treat the revolution of phenylene rings around the sigma-bonds and demonstrate the great impact of stochastic ring torsion on the intra-chain mobility in conjugated polymers using poly[phenylene vinylene] (PPV) as a model system. Finally, in Paper III we go beyond the original purpose of the methodology and utilize its great flexibility to study radiationless relaxations of hot excitons.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2007. 15 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1295
Keyword
Polaron dynamics, Exciton dynamics, pi-conjugated systems, Su-Schrieffer-Heeger (SSH) model, Adiabaticity, Charge carrier transport, Organic electronics.
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-7996 (URN)LiU-TEK-LIC-2007:4 (Local ID)978-91-85715-90-9 (ISBN)LiU-TEK-LIC-2007:4 (Archive number)LiU-TEK-LIC-2007:4 (OAI)
Presentation
2007-02-09, Planck, Fysikhuset, 13:15 (English)
Opponent
Supervisors
Note
Report code: LiU-TEK-LIC-2007:4.Available from: 2007-03-06 Created: 2007-03-06 Last updated: 2009-04-30Bibliographically approved

Open Access in DiVA

fulltext(395 kB)232 downloads
File information
File name FULLTEXT01.pdfFile size 395 kBChecksum SHA-512
b86190eb111e070b58bee6f3daafb7b8cf2c3bc966ee9395890103db2ddd199f4868c6a808dedb1b82f8e9da88105c5a38df2820d90a89550f3034d837ed5f66
Type fulltextMimetype application/pdf

Other links

Publisher's full textLink to Licentiate ThesisLink to Ph.D. Thesis

Authority records BETA

Hultell (Andersson), MagnusStafström, Sven

Search in DiVA

By author/editor
Hultell (Andersson), MagnusStafström, Sven
By organisation
Computational PhysicsThe Institute of Technology
In the same journal
Physical Review B. Condensed Matter and Materials Physics
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 232 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 323 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf