This paper investigates a local observer-based leader-following consensus control of one-sided Lipschitz (OSL) multi-agent systems (MASs) under input saturation. The proposed consensus control scheme has been formulated by using the OSL property, input saturation, directed graphs, estimated states, and quadratic inner-boundedness condition by attaining the regional stability. It is assumed that the graph always includes a (directed) spanning tree with respect to the leader root to develop matrix inequalities for investigating parameters of the proposed observer and consensus protocols. Further, a new observer-based consensus tracking method for MASs with saturation, concerning independent topologies for communicating outputs and estimates over the network, is explored to deal with a more perplexing and realistic situation. In contrast to the traditional methods, the proposed consensus approach considers output feedback and deals with the input saturation for a generalized class of nonlinear systems. The efficiency of the obtained results is illustrated via application to a group of five moving agents in the Cartesian coordinates.