liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Preproenkephalin mRNA expression in rat parabrachial neurons: relation to cells activated by systemic immune challenge
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Linköping University, Department of Clinical and Experimental Medicine, Cell Biology. Linköping University, Faculty of Health Sciences.
Show others and affiliations
2001 (English)In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 316, no 3, 165-168 p.Article in journal (Refereed) Published
Abstract [en]

By using a dual-labeling immunohistochemical/in situ hybridization technique we examined if enkephalin-expressing neurons in the pontine parabrachial nucleus, a major brain stem relay for ascending visceral and homeostatic information, were activated by systemic immune challenge. While rats subjected to intravenous injection of bacterial wall lipopolysaccharide expressed dense labeling for the immediate-early gene product FOS in parts of the parabrachial nucleus that also demonstrated dense preproenkephalin expression, only a small proportion of the enkephalin-positive neurons were FOS-positive. These data indicate that enkephalins, although implicated in a variety of autonomic responses, are not primarily involved in the transmission of immune-related information from the parabrachial nucleus to its different forebrain and brain stem targets.

Place, publisher, year, edition, pages
Elsevier Science B.V., Amsterdam. , 2001. Vol. 316, no 3, 165-168 p.
Keyword [en]
Parabrachial nucleus, Systemic inflammation, FOS, Enkephalin, In situ hybridization, Feeding
National Category
Medical and Health Sciences
Identifiers
URN: urn:nbn:se:liu:diva-12954DOI: 10.1016/S0304-3940(01)02393-XISI: 000173268200010OAI: oai:DiVA.org:liu-12954DiVA: diva2:17530
Available from: 2008-02-25 Created: 2008-02-25 Last updated: 2017-12-13
In thesis
1. Inflammation-Induced Gene Expression in Brain and Adrenal Gland
Open this publication in new window or tab >>Inflammation-Induced Gene Expression in Brain and Adrenal Gland
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The autonomic nervous system serves to maintain a constant inner environment, a process termed homeostasis. Thus, in response to the homeostatic challenge posed by infectious agents, the autonomic nervous system answers to signals from the immune system and elicits adaptive physiological and behavioral reactions. These so called sickness responses include fever, anorexia, hyperalgesia, social avoidance, and the release of stress hormones.

Neuropeptides, used in the communication between neurons, are because of their release properties and sustained actions likely mediators of homeostatic responses. The enkephalinergic system constitutes one of the largest neuropeptidergic systems in the brain, but its involvement in inflammatory conditions has been little studied. We first examined the immune-induced activation of the parabrachial nucleus (paper I), an enkephalinergic autonomic relay center in the brain stem. We found that intravenous injection of bacterial endotoxin, lipopolysaccharide (LPS), activated the external lateral parabrachial subnucleus, as measured in terms of Fos expression, but that the enkephalinergic cell population in this subnucleus was largely separated from the LPS-activated neurons. Because Fos may not always be a reliable activity marker, we next examined by in situ hybridization the immune-induced expression of newly transcribed preproenkephalin (ppENK) heteronuclear RNA (hnRNA), which gives a direct indication of the utilization of enkephalin in a particular neuron (paper II). We detected induced expression of ppENK hnRNA in several autonomic structures in the brain, including the paraventricular hypothalamic nucleus (PVH) but not the parabrachial nucleus, indicating increased enkephalinergic signaling activity in the positively labeled structures during inflammatory condition. We then examined the projections of the immune-induced ppENK transcribing PVH neurons by injecting rats intraperitoneally with the retrograde tracer substance Fluoro-Gold, hence labeling neurons with axonal projections outside the blood-brain barrier, followed by systemic injection of LPS (paper III). Dual-labeling histochemical and hybridization techniques showed that the vast majority of the ppENK hnRNA expressing cells were hypophysiotropic cells, hence being involved in neuroendocrine regulation. These findings suggest that centrally produced enkephalin is involved in the coordination of the sickness responses during systemic immune challenge, including the modulation of the release of stress hormones or other hypothalamic hormones during inflammatory conditions.

We next turned to the role of prostaglandins in the hypothalamic-pituitary-adrenal (HPA) axis response to inflammation. We injected mice deficient for the terminal prostaglandin (PG) E2 synthesizing enzyme mPGES-1 with LPS and studied their stress hormone release (paper IV). The genetically modified mice displayed attenuated plasma levels of adrenocorticotropic hormone (ACTH) and corticosterone during the later phases of the HPA-axis response compared with wild type mice, and this impairment did not depend on a changed activation pattern in the brain, but instead correlated to an early decrease in corticotropin-releasing hormone mRNA expression in the PVH, hence being the likely cause of the blunted ACTH and corticosterone responses at later time-points. Based on these findings we suggest that a neural, mPGES-1-independent pathway, and a humoral, mPGES-1-dependent pathway act in concert but in distinct temporal patterns to initiate and maintain the HPA-axis response during immune challenge.

In addition to activating the central limb of the HPA-axis, inflammatory mediators have been suggested to act directly on the adrenal gland to induce the release of corticosterone, but little is known about the underlying mechanisms. We examined adrenal tissue isolated from rats injected with LPS or interleukin-1β (IL-1β) (paper V), and found that immune stimulation resulted in dynamic changes in the adrenal immune cell population, implying a rapid depletion of dendritic cells in the inner cortical layer and the recruitment of immature cells to the outer layers. These changes were accompanied by an induced production of IL-1β and IL-1 receptor type 1, as well as of cyclo-oxygenase-2 and mPGES-1 in these cells, implying local cytokine-mediated PGE2 production in the adrenals, which also displayed EP1 and EP3 receptors in the cortex and medulla. Additional mechanistic studies using an IL-1 receptor antagonist showed that IL-1β acts locally to affect its own synthesis, as well as that of cyclooxygenase-2. Taken together these data demonstrate a mechanism by which systemic inflammatory agents activate an intrinsically regulated local signaling circuit that may influence the adrenals’ response to immune stress and may help explain the dissociation between plasma levels of ACTH and corticosteroids during chronic immune perturbations.

Place, publisher, year, edition, pages
Linköping University Electronic Press, 2008. 106 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 1043
Keyword
Inflammation, brain, adrenal gland, stress, lipopolysaccharide, interleukin-1
National Category
Neurosciences
Identifiers
urn:nbn:se:liu:diva-11089 (URN)978-91-7393-977-5 (ISBN)
Public defence
2008-03-14, Berzeliussalen, Campus US, Linköpings universitet, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2008-02-25 Created: 2008-02-25 Last updated: 2015-11-19
2. Brain Stem Involvement in Immune and Aversive Challenge
Open this publication in new window or tab >>Brain Stem Involvement in Immune and Aversive Challenge
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Activation of the immune system by e.g. bacteria induces the acute-phase-response and sickness behaviour. The latter encompasses among other things fever, lethargy, anorexia and hyperalgesia. An often used model to study sickness behaviour is the intravenous injection of the gram negative bacterial endotoxin lipopolysaccharide (LPS). LPS induces the production of inflammatory mediators, such as cytokines and prostaglandins, which in turn can interact with the central nervous system (CNS) to affect behaviour. The CNS also memorises substances that have made us sick in the past to avoid future harm, a phenomenon called conditioned taste aversion (CTA). An often used model to study CTA is the intraperitoneal injection of LiCl.

The pontine parabrachial nucleus (PB) is an autonomic relay nucleus situated in the rostral brain stem that integrates afferent somatosensory and interoceptive information and forwards this information to the hypothalamus and limbic structures. PB is crucial for the acquisition of CTA and PB neurons are activated by many anorexigenic substances. Further, PB neurons express neuropeptides, among those calcitonin gene related peptide (CGRP) and enkephalin, both of which have been implicated in immune signalling, nociception, food intake, and aversion.

By using a dual-labelling immunohistochemical/in situ hybridization technique we investigated if enkephalinergic neurons in PB are activated by systemic immune challenge. While there were many neurons in the external lateral parabrachial subnucleus (PBel) that expressed the immediate early gene fos after intravenous injection of LPS and while a large proportion of the PBel neurons expressed preproenkephalin, there were very few double-labelled cells. The fos-expressing cells were predominantly located to the outer part of the PBel (PBelo), whereas the preproenkephalin-expressing PBel neurons were located closest to the peduncle. Thus we conclude that although enkephalin has been implicated in autonomic and immune signalling, enkephalinergic neurons in PB do not seem to be activated by immune stimulation (paper I). To further characterise the PBelo neurons activated by immune challenge we investigated if these neurons expressed CGRP. Dual-labelling in situ hybridisation showed that PBelo neurons that expressed fos after intravenous injection of LPS to a large extent co-expressed CGRP mRNA, indicating that CGRP may be involved in the regulation of the sickness response in immune challenge (paper II). Using dual-labelling immunohistochemistry we examined if PBel neurons activated by an immune stimulus projected to the amygdala, a limbic structure implicated in the affective response to homeostatic challenge. Animals were injected with the retrograde tracer substance cholera toxin b (CTb) into the amygdala and subsequently subjected to immune challenge. We found that approximately a third of the neurons that expressed fos after the intravenous injection of LPS also were labelled with CTb. Thus PBel neurons activated by immune challenge project to the amygdala. The PBel-amygdala pathway has earlier been suggested to be important in nociceptive signalling. To investigate if amygdala-projecting PBel neurons are activated by nociceptive stimuli we again injected animals with CTb into the amygdala. After recovery the animals were injected with formalin into a hindpaw. Dual-labelling immunohistochemistry against fos and CTb showed that very few noxiously activated PB neurons projected to the amygdala. Thus, the PBel-amygdala projection seems to be important in immune challenge but not in nociceptive signalling (paper III). Many PBel neurons express fos after intraperitoneal injection of LiCl. Melanocortins are neuropeptides that recently have been implicated in metabolism, food intake and aversive mechanisms. The PB is known to express melanocortin receptor-4 (MC4-R) mRNA. Using dual-labelling in situ hybridization we investigated if PB neurons activated by intravenous injection of LPS or intraperitoneal injection of LiCl expressed MC4-R mRNA. We found that many PBelo neurons were activated by either LPS or LiCl and that a large proportion of such activated neurons expressed MC4-R mRNA. Further, using dual-labelling in situ hybridization against MC4-R mRNA and CGRP mRNA, we found that a large proportion of the CGRP positive PBelo neurons also expressed MC4-R mRNA.

In summary, this thesis shows that CGRP-expressing neurons in the PBel are activated by peripheral immune challenge, that lipopolysaccharide-activated PBel neurons project to the amygdala, that the amygdala-projecting neurons in the PBel are CGRP-positive, and that PBel neurons activated by immune or aversive challenge express MC4-R. Taken together, these data suggest the presence of a melanocortin-regulated CGRP-positive pathway from the PBel to the amygdala that relays information of importance to certain aspects of sickness behaviour.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2006. 83 p.
Series
Linköping University Medical Dissertations, ISSN 0345-0082 ; 963
Keyword
lipopolysaccharide, Lithium Chloride, anorexia, aversion, parabrachial, brain stem, melanocortin, CGRP, enkephalin
National Category
Physiology
Identifiers
urn:nbn:se:liu:diva-7579 (URN)91-85643-81-5 (ISBN)
Public defence
2006-11-10, Berzeliussalen, Campus US, Linköpings Universitet, Linköping, 13:00 (English)
Opponent
Supervisors
Note
On the day of the defence date the title of article II was: Feeding-related immune responsive brain stem neurons: association with CGRP. Article II: Erratum for in Neuroreport 2001;12(16):inside back cover. Neuroreport 2001;12(13):inside back cover. Article III: Erratum in: J Comp Neurol. 2005; 483:489-90.Available from: 2006-10-16 Created: 2006-10-16 Last updated: 2012-01-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textLink to PH.D. Thesis

Authority records BETA

Engström, LindaEngblom, DavidÖrtegren (Kugelberg), UnnMackerlova, LudmilaPaues, JakobBlomqvist, Anders

Search in DiVA

By author/editor
Engström, LindaEngblom, DavidÖrtegren (Kugelberg), UnnMackerlova, LudmilaPaues, JakobBlomqvist, Anders
By organisation
Cell BiologyFaculty of Health Sciences
In the same journal
Neuroscience Letters
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf