liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Interaction-Aware Motion Planning for Autonomous Vehicles With Multi-Modal Obstacle Uncertainty Predictions
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1050-3037
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering. Department of Automatic Control, Lund University, Lund, Sweden.ORCID iD: 0000-0003-1320-032x
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0001-7349-1937
2024 (English)In: IEEE Transactions on Intelligent Vehicles, ISSN 2379-8858, E-ISSN 2379-8904, Vol. 9, no 1, p. 1305-1319Article in journal (Refereed) Published
Abstract [en]

This article proposes an interaction and safety-aware motion-planning method for an autonomous vehicle in uncertain multi-vehicle traffic environments. The method integrates the ability of the interaction-aware interacting multiple model Kalman filter (IAIMM-KF) to predict interactive multi-modal maneuvers of surrounding vehicles, and the advantage of model predictive control (MPC) in planning an optimal trajectory in uncertain dynamic environments. The multi-modal prediction uncertainties, containing both the maneuver and trajectory uncertainties of surrounding vehicles, are considered in computing the reference targets and designing the collision-avoidance constraints of MPC for resilient motion planning of the ego vehicle. The MPC achieves safety awareness by incorporating a tunable parameter to adjust the predicted obstacle occupancy in the design of the safety constraints, allowing the approach to achieve a trade-off between performance and robustness. Based on the prediction of the surrounding vehicles, an optimal reference trajectory of the ego vehicle is computed by MPC to follow the time-varying reference targets and avoid collisions with obstacles. The efficiency of the method is illustrated in challenging highway-driving simulation scenarios and a driving scenario from a recorded traffic dataset.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2024. Vol. 9, no 1, p. 1305-1319
National Category
Control Engineering
Identifiers
URN: urn:nbn:se:liu:diva-193650DOI: 10.1109/TIV.2023.3314709ISI: 001173317800113OAI: oai:DiVA.org:liu-193650DiVA, id: diva2:1756376
Note

Funding Agencies|Strategic Research Area at Linkoping-Lund in Information Technology (ELLIIT)

Available from: 2023-05-11 Created: 2023-05-11 Last updated: 2024-12-02Bibliographically approved
In thesis
1. Interaction and Uncertainty-Aware Motion Planning for Autonomous Vehicles Using Model Predictive Control
Open this publication in new window or tab >>Interaction and Uncertainty-Aware Motion Planning for Autonomous Vehicles Using Model Predictive Control
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Motion planning plays a significant role in enabling advances of autonomous vehicles in saving lives and improving traffic efficiency. In a predictive motion-planning strategy, the ego vehicle predicts the motion of surrounding vehicles and uses these predictions to plan collision-free reference trajectories. In dynamic multi-vehicle traffic environments, a key research question is how to consider vehicle-to-vehicle interactions and motion uncertainties of the surrounding vehicles in the motion planner to achieve resilient motion planning of the autonomous ego vehicle. 

This Licentiate Thesis proposes a model predictive control (MPC)-based approach to achieve safe motion planning in uncertain and dynamic multi-vehicle driving environments. MPC has been widely applied for the motion planning of autonomous vehicles. However, designing resilient MPC-based motion planners that consider interactions and uncertainties of surrounding vehicles remains an open and challenging problem, which is the primary motivation for the research presented in this thesis. 

This thesis makes several contributions toward solving the interaction and uncertainty-aware motion-planning problems. The first contribution is an MPC, which is called interaction-aware moving target MPC. It is designed based on the combination of an interaction-aware motion-prediction model and time-varying reference targets of the optimal control problem for proactive and non-local trajectory planning in multi-vehicle dynamic scenarios. 

In the second contribution, the proposed MPC is extended to account for the multi-modal motion uncertainties of surrounding vehicles, including the maneuver and trajectory uncertainties, which are predicted by combining an interaction-aware motion-prediction model and a data-driven approach. Based on the modeling of uncertainties, a safety-awareness parameter is included in the design to compute the obstacle occupancy for achieving a trade-off between the performance and robustness of the MPC planner. The efficiency of the method is illustrated in challenging highway-driving simulation scenarios and a driving scenario from a recorded traffic dataset. 

The third contribution of this thesis is quantifying the motion uncertainty of surrounding obstacles to reduce the conservativeness of the motion planner while pursuing robustness. To this end, a robust motion-planning method is designed for robotic systems based on uncertainty quantification of surrounding obstacles. The proposed MPC is called risk-aware robust MPC, as the risk of robustness reduction through uncertainty quantification is analyzed. Simulations in highway merging scenarios of an autonomous vehicle with uncertain surrounding vehicles show that the approach is less conservative than a conventional robust MPC and more robust than a deterministic MPC.  

Abstract [sv]

Rörelseplanering spelar en betydande roll för att möjliggöra framsteg inom autonoma fordon med potential att rädda liv genom att undvika olyckor och förbättra trafikeffektiviteten. I en prediktiv rörelseplaneringsstrategi predikterar det egna fordonet rörelsen hos omgivande fordon och använder dessa prediktioner för att planera en säker trajektoria. I dynamiska trafiksituationer med multipla omgivande fordon är en central forsknings-fråga hur man ska ta hänsyn till de omgivande fordonens interaktioner och rörelseosäkerheter för att åstadkomma en robust rörelseplanering.

Den här licentiatavhandlingen föreslår en modellprediktiv reglerings-ansats (MPC) för rörelseplanering i osäkra och dynamiska flerfordonsmiljöer. Robust och säker modellprediktiv regleringsbaserad rörelseplanering som tar hänsyn till interaktioner och osäkerheter hos rörelsen för omgivande fordon är ett öppet och utmanande problem, vilket är den primära motiveringen för den forskning som presenteras i denna avhandling.

Modellprediktiv reglering (MPC) är en vanlig ansats för rörelseplanering för autonoma fordon. Denna avhandling presenterar metoder som är steg mot att lösa rörelseplaneringsproblemet där interaktion mellan fordon och osäkerhet i rörelser för omgivande fordon beaktas. Det första bidraget fokuserar på interaktionen mellan omgivande fordon. En modellprediktiv regulator har utvecklats baserat på en modell för hur omgivande fordon interagerar och påverkar varandras beteende. Denna modell integreras sedan som tidsvarierande referensmål för det optimala styrningsproblemet vilket ger en förutseende och robust planering för det egna fordonet.

I det andra bidraget utökas den föreslagna MPC-metoden för att ta hänsyn till de multimodala rörelseosäkerheterna hos omgivande fordon; det finns en osäkerhet i vad de omgivande fordonen kommer göra härnäst och det är osäkert hur de kommer genomföra det. Baserat på en modellering av osäkerheterna, en delvis datadriven ansats, inkluderas en säkerhetsparameter i regulatorn som möjliggör en avvägning mellan prestanda och robusthet hos MPC-planeraren.

Den tredje bidraget i avhandlingen är nya metoder för att kvantifiera rörelseosäkerheten hos omgivande fordon och att använda denna för robust planering, utan att det egna fordonet blir för konservativ i sitt agerande. Den föreslagna ansatsen bygger på robust MPC där en riskmedvetenhet introduceras. Simuleringar av motorvägskörning med omgivande fordon med rörelseosäkerhet visar att metoden är mindre konservativ än en konventionell robust MPC och mer robust än en deterministisk MPC.  

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 33
Series
Linköping Studies in Science and Technology. Licentiate Thesis, ISSN 0280-7971 ; 1964
National Category
Control Engineering
Identifiers
urn:nbn:se:liu:diva-193646 (URN)10.3384/9789180752008 (DOI)9789180751995 (ISBN)9789180752008 (ISBN)
Presentation
2023-06-13, Ada Lovelace, B-building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Note

Funding: This research was supported by the Strategic Research Area at Linköping-Lund in Information Technology (ELLIIT).

Available from: 2023-05-11 Created: 2023-05-11 Last updated: 2023-05-11Bibliographically approved
2. Context-Aware Predictive Motion Planning for Safe Autonomous Driving
Open this publication in new window or tab >>Context-Aware Predictive Motion Planning for Safe Autonomous Driving
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

In a predictive motion-planning strategy, the autonomous ego vehicle needs to predict the motion of surrounding obstacles and use predictions to plan collision-free reference trajectories. In multi-vehicle traffic environments, a key research question is how to consider vehicle-to-vehicle interactions, behavior uncertainties, and environmental influence on the motion of surrounding obstacles to achieve resilient motion planning of the autonomous ego vehicle. This thesis proposes context-aware motion-planning methods for autonomous driving in uncertain and dynamic environments, and makes several contributions to design motion-planning strategies with the desired performance.

The first contribution is designing an interaction-aware moving target model predictive control (MPC). This method is formulated based on integrating an interaction-aware motion-prediction model and time-varying reference targets of the receding-horizon optimal control problem for proactive and non-local trajectory planning in multi-vehicle dynamic traffic scenarios.

For the second contribution, the proposed interaction-aware moving target MPC planner is extended to account for the multi-modal motion uncertainties of surrounding vehicles, including both the maneuver and trajectory uncertainties. Based on the modeling of uncertainties, a safety-awareness parameter is designed to compute the obstacle occupancy to achieve a trade-off between the performance and robustness of the motion planner.

The third contribution is learning motion uncertainties of obstacles to reduce the conservativeness of the motion planner while pursuing robustness. To this end, a robust motion-planning method is designed for autonomous driving systems based on learning the unknown control set of dynamic obstacles. The learned control set is then applied to predict the reachable set of obstacles to formulate a collision-avoidance constraint. The effectiveness of the method is validated in hardware experiments involving reach-avoid planning problems for mobile robots, and in simulations of autonomous forced merging that incorporates both decision-making and trajectory planning.

The fourth contribution is an environment-aware motion-planning strategy, where the method achieves environment awareness by predicting sensible maneuvers of surrounding vehicles considering road-geometry constraints. By considering environmental factors, the method effectively predicts the forward reachability of surrounding vehicles, which is applied to formulate collision-avoidance constraints in the motion-planning problem. The performance of the proposed strategy is demonstrated through both simulations in roundabout scenarios and hardware experiments with car-like mobile robots.

This thesis demonstrates that autonomous vehicles can perform safe and efficient motion planning under uncertainties based on context awareness.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. p. 48
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2424
National Category
Control Engineering
Identifiers
urn:nbn:se:liu:diva-210120 (URN)10.3384/9789180759304 (DOI)9789180759298 (ISBN)9789180759304 (ISBN)
Public defence
2025-01-22, Ada Lovelace, B Building, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Note

Funding agencies: The Strategic Research Area at Linköping–Lund in Information Technology (ELLIIT), and the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation

Available from: 2024-12-02 Created: 2024-12-02 Last updated: 2024-12-02Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textarXiv

Authority records

Zhou, JianOlofsson, BjörnFrisk, Erik

Search in DiVA

By author/editor
Zhou, JianOlofsson, BjörnFrisk, Erik
By organisation
Vehicular SystemsFaculty of Science & Engineering
In the same journal
IEEE Transactions on Intelligent Vehicles
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf