liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SparseBTF: Sparse Representation Learning for Bidirectional Texture Functions
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-1951-7515
Technical University of Denmark, Denmark.
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Science and Technology, Media and Information Technology. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-7765-1747
Show others and affiliations
2023 (English)Conference paper, Published paper (Refereed)
Abstract [en]

We propose a novel dictionary-based representation learning model for Bidirectional Texture Functions (BTFs) aiming atcompact storage, real-time rendering performance, and high image quality. Our model is trained once, using a small trainingset, and then used to obtain a sparse tensor containing the model parameters. Our technique exploits redundancies in the dataacross all dimensions simultaneously, as opposed to existing methods that use only angular information and ignore correlationsin the spatial domain. We show that our model admits efficient angular interpolation directly in the model space, rather thanthe BTF space, leading to a notably higher rendering speed than in previous work. Additionally, the high quality-storage costtradeoff enabled by our method facilitates controlling the image quality, storage cost, and rendering speed using a singleparameter, the number of coefficients. Previous methods rely on a fixed number of latent variables for training and testing,hence limiting the potential for achieving a favorable quality-storage cost tradeoff and scalability. Our experimental resultsdemonstrate that our method outperforms existing methods both quantitatively and qualitatively, as well as achieving a highercompression ratio and rendering speed.

Place, publisher, year, edition, pages
2023.
National Category
Media and Communication Technology
Identifiers
URN: urn:nbn:se:liu:diva-195283OAI: oai:DiVA.org:liu-195283DiVA, id: diva2:1769990
Conference
Eurographics Symposium on Rendering (EGSR), Delft, The Netherlands, 28 - 30 June, 2023
Available from: 2023-06-19 Created: 2023-06-19 Last updated: 2023-06-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Kavoosighafi, BehnazUnger, JonasMiandji, Ehsan

Search in DiVA

By author/editor
Kavoosighafi, BehnazHajisharif, SaghiUnger, JonasMiandji, Ehsan
By organisation
Media and Information TechnologyFaculty of Science & Engineering
Media and Communication Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf