liu.seSearch for publications in DiVA

Jump to content
Change search PrimeFaces.cw("Fieldset","widget_formSmash_search",{id:"formSmash:search",widgetVar:"widget_formSmash_search",toggleable:true,collapsed:true,toggleSpeed:500,behaviors:{toggle:function(ext) {PrimeFaces.ab({s:"formSmash:search",e:"toggle",f:"formSmash",p:"formSmash:search"},ext);}}});
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:upper:j_idt191",widgetVar:"citationDialog",width:"800",height:"600"});});
$(function(){PrimeFaces.cw("ImageSwitch","widget_formSmash_j_idt977",{id:"formSmash:j_idt977",widgetVar:"widget_formSmash_j_idt977",fx:"fade",speed:500,timeout:8000},"imageswitch");});
#### Open Access in DiVA

No full text in DiVA
#### Other links

Publisher's full text
#### Search in DiVA

##### By author/editor

Achieng, PaulineBerntsson, FredrikKozlov, Vladimir
##### By organisation

Analysis and Mathematics EducationFaculty of Science & EngineeringApplied Mathematics
##### In the same journal

Computational Methods in Applied Mathematics
On the subject

Fluid Mechanics and Acoustics
#### Search outside of DiVA

GoogleGoogle ScholarfindCitings = function() {PrimeFaces.ab({s:"formSmash:j_idt1205",f:"formSmash",u:"formSmash:citings",pa:arguments[0]});};$(function() {findCitings();}); $(function(){PrimeFaces.cw('Chart','widget_formSmash_visits',{id:'formSmash:visits',type:'bar',responsive:true,data:[[12,12,5,9,6,8,4,11,15,2]],title:"Visits for this publication",axes:{yaxis: {label:"",min:0,max:20,renderer:$.jqplot.LinearAxisRenderer,tickOptions:{angle:0}},xaxis: {label:"",renderer:$.jqplot.CategoryAxisRenderer,tickOptions:{angle:-90}}},series:[{label:'diva2:1788778'}],ticks:["Dec -23","Jan -24","Feb -24","Mar -24","Apr -24","May -24","Jun -24","Jul -24","Aug -24","Sep -24"],orientation:"vertical",barMargin:3,datatip:true,datatipFormat:"<span style=\"display:none;\">%2$d</span><span>%2$d</span>"},'charts');}); Total: 114 hits
$(function(){PrimeFaces.cw("Dialog","citationDialog",{id:"formSmash:lower:j_idt1298",widgetVar:"citationDialog",width:"800",height:"600"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt173",{id:"formSmash:upper:j_idt173",widgetVar:"widget_formSmash_upper_j_idt173",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt174_j_idt176",{id:"formSmash:upper:j_idt174:j_idt176",widgetVar:"widget_formSmash_upper_j_idt174_j_idt176",target:"formSmash:upper:j_idt174:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Reconstruction of the Radiation Condition and Solution for the Helmholtz Equation in a Semi-infinite Strip from Cauchy Data on an Interior SegmentPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2023 (English)In: Computational Methods in Applied Mathematics, ISSN 1609-4840, E-ISSN 1609-9389Article in journal (Refereed) Epub ahead of print
##### Abstract [en]

##### Place, publisher, year, edition, pages

WALTER DE GRUYTER GMBH , 2023.
##### Keywords [en]

Helmholtz Equation; Inverse Problem; Cauchy Problem; Ill-Posed Problem; Well-Posed Problem; Landweber Method
##### National Category

Fluid Mechanics and Acoustics
##### Identifiers

URN: urn:nbn:se:liu:diva-196637DOI: 10.1515/cmam-2022-0244ISI: 001035412500001OAI: oai:DiVA.org:liu-196637DiVA, id: diva2:1788778
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt468",{id:"formSmash:j_idt468",widgetVar:"widget_formSmash_j_idt468",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt474",{id:"formSmash:j_idt474",widgetVar:"widget_formSmash_j_idt474",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt480",{id:"formSmash:j_idt480",widgetVar:"widget_formSmash_j_idt480",multiple:true}); Available from: 2023-08-17 Created: 2023-08-17 Last updated: 2023-11-13
##### In thesis

We consider an inverse problem for the Helmholtz equation of reconstructing a solution from measurements taken on a segment inside a semi-infinite strip. Homogeneous Neumann conditions are prescribed on both side boundaries of the strip and an unknown Dirichlet condition on the remaining part of the boundary. Additional complexity is that the radiation condition at infinity is unknown. Our aim is to find the unknown function in the Dirichlet boundary condition and the radiation condition. Such problems appear in acoustics to determine acoustical sources and surface vibrations from acoustic field measurements. The problem is split into two sub-problems, a well-posed and an ill-posed problem. We analyse the theoretical properties of both problems; in particular, we show that the radiation condition is described by a stable non-linear problem. The second problem is ill-posed, and we use the Landweber iteration method together with the discrepancy principle to regularize it. Numerical tests show that the approach works well.

1. Reconstruction of solutions of Cauchy problems for elliptic equations in bounded and unbounded domains using iterative regularization methods$(function(){PrimeFaces.cw("OverlayPanel","overlay1811372",{id:"formSmash:j_idt754:0:j_idt758",widgetVar:"overlay1811372",target:"formSmash:j_idt754:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1227",{id:"formSmash:j_idt1227",widgetVar:"widget_formSmash_j_idt1227",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1280",{id:"formSmash:lower:j_idt1280",widgetVar:"widget_formSmash_lower_j_idt1280",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1281_j_idt1283",{id:"formSmash:lower:j_idt1281:j_idt1283",widgetVar:"widget_formSmash_lower_j_idt1281_j_idt1283",target:"formSmash:lower:j_idt1281:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});