liu.seSearch for publications in DiVA
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mass Transport in "Water-in-Polymer Salt" Electrolytes
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-8242-7547
Chalmers Univ Technol, Sweden.
Karlstad Univ, Sweden.
Linköping University, Department of Science and Technology, Laboratory of Organic Electronics. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-5611-5275
Show others and affiliations
2023 (English)In: Chemistry of Materials, ISSN 0897-4756, E-ISSN 1520-5002, Vol. 35, no 16, p. 6382-6395Article in journal (Refereed) Published
Abstract [en]

“Water-in-polymer salt” electrolytes (WiPSEs) based on potassium polyacrylate (PAAK) belong to a new family of “water-in-salt” electrolytes that is envisioned as a potential solution for large-scale supercapacitors to balance the electric grid at short time scales. The WiPSEs display a broad electrochemical stability window up to 3 V, yet they are nonflammable and provide high ionic conductivity (100 mS/cm) as required in high-power devices. However, the transport of matter in PAAK-based WiPSEs has not been studied. In this work, we have extensively characterized PAAK by spectroscopic methods such as Raman spectroscopy and NMR diffusometry to determine the state of water and elucidate the mechanism of ionic transport as well as its interplay with water and polymer chain dynamics, which reveals that a significant proportion of the transport in WiPSEs is attributed to hydrated cations. The results are further supported by molecular dynamics (MD) simulations. Finally, the potential of WiPSEs based on PAAK is demonstrated in an activated carbon-based supercapacitor operating up to 2 V with reasonable self-discharge. This proof of concept shows promise for low-cost and large-scale supercapacitors.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC , 2023. Vol. 35, no 16, p. 6382-6395
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-197473DOI: 10.1021/acs.chemmater.3c01089ISI: 001040465300001OAI: oai:DiVA.org:liu-197473DiVA, id: diva2:1795532
Note

Funding Agencies|Swedish Energy Agency [P52023-1]; Knut and Alice Wallenberg Foundation [21-130]; Swedish Electricity Storage and Balancing Centre (SESBC); Swedish Energy Agency together with 5 academic and 26 non-academic partners; Ligna Energy; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University; Swedish Research Council; STandUP for Energy collaboration; [KAW 2020.0174]; [22-134]; [2009-00971]; [2020-05223]

Available from: 2023-09-08 Created: 2023-09-08 Last updated: 2024-02-08
In thesis
1. Water-in-polymer Salt Electrolyte (WIPSE) for Sustainable Lignin Batteries
Open this publication in new window or tab >>Water-in-polymer Salt Electrolyte (WIPSE) for Sustainable Lignin Batteries
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Organic electrolytes are widely used in energy storage technologies, but they are known to have safety, cost, and eco friendliness concerns. Water based electrolytes do not have those issues but are limited by their narrow range potential range of operation to 1.2V. Above that voltage, significant side reactions lead to gas evolution, side reaction and high selfdischarge rate in organic batteries. Because of their superior ionic conductivities, which are critical for reducing device resistance and improving power; as well as their cost-effective ness and non-flammability, researchers have had a second look at water-based electrolyte and found out that super concentrated aqueous solutions behave differently, and their electrochemical stability window can be widened.

In this thesis, polyacrylate (PAAK) based "water in polymer salt" electrolyte (WIPSE) has been identified as a promising solution for large-scale energy storage devices. This new family of "water in salt" electrolytes offers a broad electrochemical stability window of up to 3V, a high ionic conductivity (100 mS/cm) and is non-flammable, making it ideal for high power electrochemical storage devices. However, little is known about the matter transport in PAAK based WIPSE and in "water in salt" electrolytes in general. Therefore, this thesis also aims to investigate the properties of PAAK using spectroscopic techniques such as Raman spectroscopy and diffusion NMR to understand the behavior of water and the mechanism of ionic transport in relation to water and polymer chain dynamics. Since the electrolyte only transports cations, it is suitable for use in "cation rocking chair" batteries that utilize two types of polymeric quinones, lignin, and polyimide redox polymers, as positive and negative electrodes, respectively. The electrochemically active redox polymers with K+ ions at neutral pH are ions at neutral pH are advantageous for avoiding corrosion in metal collectors. Further for understanding the fundamental of self-discharge mechanism, the impact of some critical chemical and physical parameters on performance of lignin-based batteries have been investigated.

The final chapter of the thesis introduces a novel approach to address the challenges associated with Zn-ion batteries by utilizing the "water-inpolymer salt" electrolyte concept modified by salt additives. The goal is to enable the use of lignin-carbon (L-C) electrodes in a Zinc battery. Lignin, carbon and zinc are among the most affordable, environmentally friendly and sustainable options for energy storage for energy storage. By incorporating WIPSE electrolytes these batteries can offer additional benefits, such as improved safety and the prevention of dendrite formation. Our findings demonstrate that acrylate groups in the electrolyte stabilize the flux on the zinc electrode surface, promoting parallel deposition and significantly reducing dendritic formation through vertical growth. The assembled Zn-lignin battery delivers a maximum energy of 23 Wh/kg and a maximum power of 610 W/kg, with an exceptional 82% retention after 8000 cycles. With the reduced expected environmental impact of green and the cost- effectiveness of these polymer electrolytes, the resulting battery shows great promise in the battery market. Its emergence has opened a new avenue in the pursuit of safe and efficient batteries, which has been a major area of focus within the energy storage industry.

Abstract [sv]

Organiska elektrolyter används i stor utsträckning i energilagringstekniker, mende är kända för att ha problem med säkerhet, kostnad och miljövänlighet. Vattenbaserade elektrolyter har inte dessa problem utan begränsas av deras smala potentialområde för drift till 1.2 V. Över den spänningen leder betydande sidoreaktioner till gasutveckling, sidoreaktion och hög självurladdningshastighet i organiska batterier. På grund av deras överlägsna jonledningsförmåga, som är avgörande för att minska enhetens motstånd och förbättra kraften; och u töver deras kostnadseffektivitet och icke antändlighet har forskare tagit en andra titt på vattenbaserad elektrolyt och upptäckt att superkoncentrerade vattenlösningar beter sig annorlunda och att deras elektrokemiska stabilitetsfönster kan vidgas.

I denna avhandling har polyakrylat (PAAK) baserad "vatten i polymersalt" elektrolyt (WIPSE) identifierats som en lovande lösning för storskaliga energilagringsenheter. Denna nya familj av "vatten i salt" elektrolyter erbjuder ett brett elektrokemiskt stabilitetsfönster på upp till 3V, en hög jonledningsförmåga (100 mS/cm) och är icke brandfarlig, vilket gör den idealisk för högeffekts elektrokemiska lagringsenheter. Lite är dock känt om materia transporten i PAAK baserade WIPSE och i "vatten i salt" elektrolyter i allmänhet. Därför syftar denna avhandling också till att undersöka egenskaperna hos PAAK med hjälp av spektroskopiska tekniker såsom Raman spektroskopi och diffusions NMR för att förstå vattnets beteende och mekanismen för jontransport i relation till vatten och polymerkedjedynamik. Eftersom elektrolyten endast transporterar katjoner är den lämplig för användning i "katjongungstols" batterier som använder två typer av polymera kinoner, lignin och polyimid redoxpolymerer, som positiva respektive negativa elektroder. De elektrokemiskt aktiva redox polymererna med K+ -joner vid neutralt pH är fördelaktiga för at t undvika korrosion i metallsamlare. För att ytterligare förstå grunden för självurladdningsmekanismen har effekten av några kritiska kemiska och fysikaliska parametrar på prestanda hos ligninbaserade batterier undersökts.

Det sista kapitlet av avhandlingen introducerar ett nytt tillvägagångssätt för att ta itu med utmaningarna förknippade med Zn jonbatterier genom att använda elektrolytkonceptet "vatten i polymersalt" modifierat av salttillsatser. Målet är att möjliggöra användningen av lignin-kol (L-C) elektroder i ett zinkbatteri. Lignin, kol och zink är bland de mest prisvärda, miljövänliga och hållbara alternativen som finns för energilagring. Genom att inkludera WIPSE-elektrolyter kan dessa batterier erbjuda ytterligare fördelar, såsom förbättrad säkerhet och stabilitet och förhindrande av dendritbildning. Våra resultatet visar att akrylatgrupperna i elektrolyten stabiliserar flödet på zinkelektrodytan, främjar parallell avsättning och minska dendritisk bildning avsevärt genom vertikal tillväxt. Det sammansatta Zn-ligninbatteriet levererar en maximal energi på 23 Wh/kg och en maximal effekt på 610 W/kg, med en exceptionell retention på 82 % efter 8000 cykler. Med den minskade förväntade miljöpåverkan från gröna material och kostnadseffektiviteten hos dessa polymerelektrolyter, visar det resulterande batterikonceptet mycket lovande på batterimarknaden. Dess framväxt har öppnat en ny väg i jakten på säkra och effektiva batterier, vilket har varit ett stort fokusområde inom energilagringsindustrin.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. p. 109
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2353
Keywords
Water-in-polymer salt electrolyte (WiPSE), Lignin batteries, Zn-ion batteries, Sustainability
National Category
Other Chemical Engineering
Identifiers
urn:nbn:se:liu:diva-198777 (URN)10.3384/9789180753739 (DOI)9789180753722 (ISBN)9789180753739 (ISBN)
Public defence
2023-11-17, K2, Kåkenhus, Campus Norrköping, Norrköping, 14:00 (English)
Opponent
Supervisors
Available from: 2023-10-27 Created: 2023-10-27 Last updated: 2023-12-06Bibliographically approved

Open Access in DiVA

fulltext(4252 kB)54 downloads
File information
File name FULLTEXT01.pdfFile size 4252 kBChecksum SHA-512
41b0eb4afa62468969f3cfe032211fbf7b0793249d0569fb5d321ad1ee68168a04316374f530c4322fc63945ec75954e16a7874efc7929a6e815d0ad0c341fd7
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Khan, ZiyauddinKumar, DivyaratanCrispin, Xavier
By organisation
Laboratory of Organic ElectronicsFaculty of Science & Engineering
In the same journal
Chemistry of Materials
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 54 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 119 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf