liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
All-Fiber System for Photonic States Carrying Orbital Angular Momentum: A Platform for Classical and Quantum Information Processing
Linköping University, Department of Electrical Engineering, Information Coding. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0003-4295-7364
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The protection of confidential data is a fundamental need in the society in which we live. This task becomes more relevant when observing that every day, data traffic increases exponentially, as well as the number of attacks on the telecommunication infra-structure. From the natural sciences, it has been strongly argued that quantum communication has great potential to solve this problem, to such an extent that various governmental and industrial entities believe the protection provided by quantum communications will be an important layer in the field of information security in the next decades. However, integrating quantum technologies both in current optical networks and in industrial systems is not a trivial task, taking into account that a large part of current quantum optical systems are based on bulk optical devices, which could become an important limitation. Throughout this thesis we present an all-in-fiber optical platform that allows a wide range of tasks that aim to take a step forward in terms of generation and detection of photonic states. Among the main features, the generation and detection of photonic quantum states carrying orbital angular momentum stand out.   

The platform can also be configured for the generation of random numbers from quantum mechanical measurements, a central aspect in future information tasks.  

Our scheme is based on the use of new space-division-multiplexing (SDM) technologies such as few-mode-fibers and photonic lanterns. Furthermore, our platform can also be scaled to high dimensions, it operates in 1550 nm (telecommunications band) and all the components used for its implementation are commercially available. The results presented in this thesis can be a solid alternative to guarantee the compatibility of new SDM technologies in emerging experiments on optical networks and open up new possibilities for quantum communication. 

Abstract [sv]

Skydd av konfidentiell information är ett grundläggande behov i det samhälle vi lever i. Denna uppgift blir mer relevant när man observerar att datatrafiken ökar exponentiellt varje dag, liksom antalet attacker på telekommunikationsinfrastrukturen. Från naturvetenskapen har det starkt hävdats att kvantkommunikation har en stor potential att lösa detta problem, i en sådan utsträckning att olika statliga och industriella enheter tror att skyddet som tillhandahålls av kvantkommunikation kommer att vara en viktig del av informationssäkerhet de kommande decennierna.

Att implementera kvantteknik både i nuvarande optiska nätverk och i industriella system är dock inte en trivial uppgift, med tanke på att en stor del av nuvarande kvantoptiska system inte är i optiska fiber, vilket kan bli en begränsning. Genom hela denna avhandling presenterar vi en plattform som är helt konstruerad med optiska fiber som tillåter ett brett utbud av uppgifter som syftar till att ta ett steg framåt när det gäller integration med nu-varande optiska nätverk. Bland huvuddragen i denna idé utmärker den skapandet och detekteringen av fotoniska kvanttillstånd i  ”Orbital Angular Momentum”, såväl som allmänna överlagringar  av rumsliga optiska moder som kan transmitteras inom en optisk fiber. Plattformen kan också konfigureras för generering av slumptal från kvantmekaniska mätningar, vilket är en central aspekt i framtida hantering av information.  

Vår plattform är baserad på användningen av nya tekniker för ”Space Division Multiplexing” (på Engelska) såsom ”few-mode-fibers” och ”photonic lanterns”. Dessutom kan vår plattform skalas till högre dimensioner, den fungerar i 1550 nm (telekommunikationsbandet) och alla komponenter som används för dess implementering är kommersiellt tillgängliga, därför kan resultaten som presenteras i denna avhandling vara ett robust alternativ för att säkerställa kompatibiliteten av nya framväxande teknologier och experiment med nästa generations optiska nätverk och öppnar nya möjligheter för kvantkommunikation.   

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2023. , p. 105
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2340
Keywords [en]
Quantum Communication, Optical communication, Orbital Angular Momentum, Photonic Lantern, Few-mode-fibers
National Category
Telecommunications
Identifiers
URN: urn:nbn:se:liu:diva-197796ISBN: 9789180753258 (print)ISBN: 9789180753265 (electronic)OAI: oai:DiVA.org:liu-197796DiVA, id: diva2:1797425
Public defence
2023-10-20, Ada Lovelace auditorium, B-building, Campus Valla, Linköping, 13:00 (English)
Opponent
Supervisors
Available from: 2023-09-14 Created: 2023-09-14 Last updated: 2024-01-10Bibliographically approved
List of papers
1. Few-Mode-Fiber Technology Fine-tunes Losses in Quantum Communication Systems
Open this publication in new window or tab >>Few-Mode-Fiber Technology Fine-tunes Losses in Quantum Communication Systems
2021 (English)In: Physical Review Applied, E-ISSN 2331-7019, Vol. 16, no 3, article id 034018Article in journal (Refereed) Published
Abstract [en]

A natural choice for quantum communication is to use the relative phase between two paths of a single photon for information encoding. This method was nevertheless quickly identified as impractical over long distances, and thus a modification based on single-photon time bins has become widely adopted. It, how-ever, introduces a fundamental loss, which increases with the dimension and limits its application over long distances. Here solve this long-standing hurdle by using a few-mode-fiber space-division-multiplexing platform working with orbital-angular-momentum modes. In our scheme, we maintain the practicability provided by the time-bin scheme, while the quantum states are transmitted through a few-mode fiber in a configuration that does not introduce postselection losses. We experimentally demonstrate our proposal by successfully transmitting phase-encoded single-photon states for quantum cryptography over 500 m of few-mode fiber, showing the feasibility of our scheme.

Place, publisher, year, edition, pages
AMER PHYSICAL SOC, 2021
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-179872 (URN)10.1103/PhysRevApplied.16.034018 (DOI)000698660300003 ()
Note

Funding Agencies|Ceniit Linkoping University; Swedish Research CouncilSwedish Research CouncilEuropean Commission [2017-04470]; QuantERA SECRET [2019-00392]; Knut and Alice Wallenberg Foundation through the Wallenberg Center for Quantum Technology; Fondo Nacional de Desarrollo Cientifico y TecnologicoComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT)CONICYT FONDECYT [1200859]; ANID Millennium Science Initiative program [ICN17_012]

Available from: 2021-10-06 Created: 2021-10-06 Last updated: 2024-01-10
2. Dynamic generation of photonic spatial quantum states with an all-fiber platform
Open this publication in new window or tab >>Dynamic generation of photonic spatial quantum states with an all-fiber platform
2023 (English)In: Optics Express, E-ISSN 1094-4087, Vol. 31, no 6, p. 10673-10683Article in journal (Refereed) Published
Abstract [en]

Photonic spatial quantum states are a subject of great interest for applications in quantum communication. One important challenge has been how to dynamically generate these states using only fiber-optical components. Here we propose and experimentally demonstrate an all-fiber system that can dynamically switch between any general transverse spatial qubit state based on linearly polarized modes. Our platform is based on a fast optical switch based on a Sagnac interferometer combined with a photonic lantern and few-mode optical fibers. We show switching times between spatial modes on the order of 5 ns and demonstrate the applicability of our scheme for quantum technologies by demonstrating a measurement-device-independent (MDI) quantum random number generator based on our platform. We run the generator continuously over 15 hours, acquiring over 13.46 Gbits of random numbers, of which we ensure that at least 60.52% are private, following the MDI protocol. Our results show the use of photonic lanterns to dynamically create spatial modes using only fiber components, which due to their robustness and integration capabilities, have important consequences for photonic classical and quantum information processing.(c) 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

Place, publisher, year, edition, pages
Optica Publishing Group, 2023
National Category
Other Physics Topics
Identifiers
urn:nbn:se:liu:diva-193996 (URN)10.1364/OE.481974 (DOI)000974423800007 ()37157609 (PubMedID)
Note

Funding Agencies|Knut och Alice Wallenbergs Stiftelse; QuantERA grant SECRET [VR 2019-268 00392]; Swedish Research 266 Council [VR 2017-04470]; Centrum foer Industriell Informationsteknologi, Linkoepings Universitet

Available from: 2023-05-23 Created: 2023-05-23 Last updated: 2024-01-10
3. A few-mode fiber Mach-Zehnder interferometer for quantum communication applications
Open this publication in new window or tab >>A few-mode fiber Mach-Zehnder interferometer for quantum communication applications
2020 (English)In: Frontiers in Optics / Laser Science / [ed] B. Lee, C. Mazzali, K. Corwin, and R. Jason Jones, Optical Society of America, 2020, article id LM1F.6Conference paper, Published paper (Refereed)
Abstract [en]

We show that telecom few-mode fiber Mach-Zehnder interferometers can be used for quantum communication protocols where the LP01 and LP11a modes are employed to encode spatial qubits.

Place, publisher, year, edition, pages
Optical Society of America, 2020
Series
OSA Technical Digest
Keywords
Few mode fibers, Quantum communications, Quantum key distribution, Single mode fibers, Space division multiplexing, Step index fibers
National Category
Atom and Molecular Physics and Optics Communication Systems
Identifiers
urn:nbn:se:liu:diva-184461 (URN)10.1364/LS.2020.LM1F.6 (DOI)9781943580804 (ISBN)
Conference
Laser Science 2020, Washington, DC, United States, 14–17 September 2020
Note

Funding: The authors acknowledge support from Ceniit Linköping University, the Swedish Research Council (VR 2017-04470), the Knut and Alice Wallenberg Foundation through the Wallenberg Center for Quantum Technology (WACQT) and by the QuantERA grant SECRET (VR grant no. 2019-00392).

Available from: 2022-04-22 Created: 2022-04-22 Last updated: 2024-01-10Bibliographically approved
4. Creating Spatial States of Light for Quantum Information with Photonic Lanterns
Open this publication in new window or tab >>Creating Spatial States of Light for Quantum Information with Photonic Lanterns
2021 (English)In: Applied Industrial Optics 2021 / [ed] G. Miller, A. Smith, I. Capraro, and J. Majors, Optical Society of America, 2021, article id W2A.2Conference paper, Published paper (Refereed)
Abstract [en]

We demonstrate an all-fiber platform for the generation and detection of spatial photonic states where combinations of LP01, LP11a and LP11b modes are used. This scheme can be employed for quantum communication applications.

Place, publisher, year, edition, pages
Optical Society of America, 2021
Series
OSA Technical Digest
Keywords
Few mode fibers, Quantum communications, Quantum cryptography, Quantum information, Space division multiplexing, Spatial light modulators
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-184462 (URN)10.1364/AIO.2021.W2A.2 (DOI)9781943580934 (ISBN)
Conference
Applied Industrial Optics: Spectroscopy, Imaging and Metrology 2021, Washington, DC, United States, 26–28 July 2021
Available from: 2022-04-22 Created: 2022-04-22 Last updated: 2024-01-10Bibliographically approved
5. Quantum Random Number Generation Based on Spatial Modal Superposition over Few-Mode-Fibers
Open this publication in new window or tab >>Quantum Random Number Generation Based on Spatial Modal Superposition over Few-Mode-Fibers
2022 (English)In: Frontiers in Optics + Laser Science 2022 (FIO, LS), Optica Publishing Group , 2022Conference paper, Published paper (Refereed)
Abstract [en]

A quantum random number generator based on few-mode fiber technology is presented. The randomness originates from measurements of spatial modal quantum superpositions of the LP11a and LP11b modes. The generated sequences have passed NIST tests.

Place, publisher, year, edition, pages
Optica Publishing Group, 2022
Series
Frontiers in Optics + Laser Science 2022 (FIO, LS)
Keywords
Few mode fibers, Optical fibers, Random number generation, Single mode fibers, Single photon detectors, Variable optical attenuators
National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:liu:diva-197797 (URN)10.1364/FIO.2022.JTu5A.28 (DOI)978-1-957171-17-3 (ISBN)
Conference
Frontiers in Optics + Laser Science 2022 (FIO, LS), Technical Digest Series, Rochester, New York
Available from: 2023-09-14 Created: 2023-09-14 Last updated: 2024-01-10Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Alarcón, Alvaro

Search in DiVA

By author/editor
Alarcón, Alvaro
By organisation
Information CodingFaculty of Science & Engineering
Telecommunications

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 576 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf