liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Asymmetric relaxation of SiGe/Si(110) investigated by high-resolution x-ray diffraction reciprocal space mapping
Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Surface and Semiconductor Physics . Linköping University, The Institute of Technology.
2006 (English)In: Applied physics letters, ISSN 0003-6951, Vol. 89, 181901-1--181901-3 p.Article in journal (Refereed) Published
Abstract [en]

Strain relaxation of SiGe/Si(110) has been studied by x-ray reciprocal space mapping. To get information about the in-plane lattice mismatch in different directions, two-dimensional maps around, e.g., (260) and (062) reciprocal lattice points have been obtained from Si0.8Ge0.2/Si(110) samples, which were exposed to different annealing conditions. The in-plane lattice mismatch was found to be asymmetric with the major strain relaxation observed in the lateral [001] direction. This was associated with the formation and propagation of dislocations oriented along [10]. The relaxation of as-grown structures during postannealing is thus different from relaxation during growth, which is mainly along [10].

 

 

Place, publisher, year, edition, pages
2006. Vol. 89, 181901-1--181901-3 p.
Keyword [en]
Ge-Si alloys, silicon, semiconductor materials, elemental semiconductors, X-ray diffraction, annealing, dislocations, stress relaxation
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-13276DOI: 10.1063/1.2364861OAI: oai:DiVA.org:liu-13276DiVA: diva2:18172
Available from: 2008-05-07 Created: 2008-05-07 Last updated: 2009-05-11
In thesis
1. Growth and Characterization of Strain-engineered Si/SiGe Heterostructures Prepared by Molecular Beam Epitaxy
Open this publication in new window or tab >>Growth and Characterization of Strain-engineered Si/SiGe Heterostructures Prepared by Molecular Beam Epitaxy
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The strain introduced by lattice mismatch is a built-in characteristic in Si/SiGe heterostructures, which has significant influences on various material properties. Proper design and precise control of strain within Si/SiGe heterostructures, i.e. the so-called “strain engineering”, have become a very important way not only for substantial performance enhancement of conventional microelectronic devices, but also to allow novel device concepts to be integrated with Si chips for new functions, e.g. Si-based optoelectronics. This thesis thus describes studies on two subjects of such strain-engineered Si/SiGe heterostructures grown by molecular beam epitaxy (MBE). The first one focuses on the growth and characterizations of delicately strain-symmetrized Si/SiGe multi-quantum-well/superlattice structures on fully relaxed SiGe virtual substrates for light emission in the THz frequency range. The second one investigates the strain relaxation mechanism of thin SiGe layers during MBE growth and post-growth processes in non-conventional conditions.

Two types of THz emitters, based on different quantum cascade (QC) intersubband transition schemes, were studied. The QC emitters using the diagonal transition between two adjacent wells were grown with Si/Si0.7Ge0.3 superlattices up to 100 periods. It was shown that nearly perfect strain symmetry in the superlattice with a high material quality was obtained. The layer parameters were precisely controlled with deviations of ≤ 2 Å in layer thickness and ≤ 1.5 at. % in Ge composition from the designed values. The fabricated emitter devices exhibited a dominating emission peak at ~13 meV (~3 THz), which was consistent with the design. An attempt to produce the first QC THz emitter based on the bound-to-continuum transition was made. The structures with a complicated design of 20 periods of active units were extremely challenging for the growth. Each unit contained 16 Si/Si0.724Ge0.276 superlattice layers, in which the thinnest one was only 8 Å. The growth parameters were carefully studied, and several samples with different boron δ-doping concentrations were grown at optimized conditions. Extensive material characterizations revealed a high crystalline quality of the grown structures with an excellent growth control, while the heavy δ-doping may introduce layer undulations as a result of the non-uniformity in the strain field. Moreover, carrier lifetime dynamics, which is crucial for the THz QC structure design, was also investigated. Strain-symmetrized Si/SiGe multi-quantum-well structures, designed for probing the carrier lifetime of intersubband transitions inside a well between heavy hole 1 (HH1) and light hole 1 (LH1) states with transition energies below the optical phonon energy, were grown on SiGe virtual substrates. The lifetime of the LH1 excited state was determined directly with pump-probe spectroscopy. The measurements indicated an increase of lifetime by a factor of ~2 due to the increasingly unconfined LH1 state, which agreed very well with the theory. It also showed a very long lifetime of several hundred picoseconds for the holes excited out of the well to transit back to the well through a diagonal process.

Strained SiGe grown on Si (110) substrates has promising potentials for high-speed microelectronics devices due to the enhanced carrier mobility. Strain relaxation of SiGe/Si(110) subjected to different annealing treatments was studied by X-ray reciprocal space mapping. The in-plane lattice mismatch was found to be asymmetric with the major strain relaxation observed in the lateral [001] direction. It was concluded that this was associated to the formation and propagation of conventional a/2<110> dislocations oriented along [110]. This was different from the relaxation observed during growth, which was mainly along in-plane [110].

A novel MBE growth process to fabricate thin strain-relaxed Si0.6Ge0.4 virtual substrates involving low-temperature (LT) buffer layers was investigated. At a certain LT-buffer growth temperature, a dramatic increase in the strain relaxation accompanied with a decrease of surface roughness was observed in the top SiGe, together with a cross-hatch/cross-hatch-free transition in the surface morphology. It was explained by the association with a certain onset stage of the ordered/disordered transition during the growth of the LT-SiGe buffer.

Abstract [sv]

Kisel(Si)-baserad mikroelektronik har utvecklats under en femtioårsperiod till att bli basen för vår nuvarande informationsteknologi. Förutom att integrera fler och mindre komponenter på varje kisel-chip så utvecklas metoder att modifiera och förbättra materialegenskaperna för att förbättra prestanda ytterligare. Ett sätt att göra detta är att kombinera kisel med germanium (Ge) bl.a. för att skapa kvantstrukturer av nanometer-storlek. Eftersom Ge-atomerna är större än Si-atomerna kan man skapa en töjning i materialet vilket kan förbättra egenskaperna, ex.vis hur snabbt laddningarna (elektronerna) rör sig i materialet. Genom att variera Gekoncentrationen i tunna skikt kan man skapa skikt som är antingen komprimerade eller expanderade och därmed ger möjlighet att göra strukturer för tillverkning av nya typer av komponenter för mikroelektronik eller optoelektronik. I detta avhandlingsarbete har Si/SiGe nanostrukturer tillverkats med molekylstråle-epitaxi-teknik (molecular beam epitaxy, MBE). Med denna teknik byggs materialet upp på ett substrat, atomlager för atomlager, med mycket god kontroll på sammansättningen av varje skikt. Samtidigt kan töjningen av materialet designas så att inga defekter skapas alternativt många defekter genereras på ett kontrollerat sätt. I denna avhandling beskrivs detaljerade studier av hur töjda i/SiGe-strukturer kan tillverkas och ge nya potentiella tillämpningar ex.vis som källa för infraröd strålning. Studierna av de olika töjda skikten har framför allt gjorts med avancerade röntgendiffraktionsmätningar och transmissionselektronmikroskopi.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2008. 69 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1176
Keyword
Si/SiGe, Strain engineering, Molecular beam epitaxy, THz, Quantum cascade, Strain relaxation
National Category
Materials Engineering
Identifiers
urn:nbn:se:liu:diva-11746 (URN)978-91-7393-911-9 (ISBN)
Public defence
2008-06-02, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2008-05-07 Created: 2008-05-07 Last updated: 2009-05-19Bibliographically approved
2. Near-infrared photodetectors based on Si/SiGe nanostructures
Open this publication in new window or tab >>Near-infrared photodetectors based on Si/SiGe nanostructures
2006 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Two types of photodetectors containing Ge/Si quantum dots have been fabricated based on materials grown by molecular beam epitaxy and characterized with several experimental techniques. The aim was to study new device architectures with the implementation of Ge nanostructures, in order to obtain high detection efficiency in the near infrared range at room temperature.

Heterojunction bipolar phototransistors were fabricated with 10 Ge dot layers in the base-collector (b-c) junction. With the illumination of near infrared radiation at 1.31 to 1.55 µm, the incident light would excite the carriers. The applied field across the b-c junction caused hole transport into the base, leading to a reduced potential barrier between the emitter-base (e-b) junction. Subsequently, this resulted in enhanced injection of electrons across the base into the collector, i.e., forming an amplified photo-induced current. We have therefore obtained significantly enhanced photo-response for the Ge-dot based phototransistors, compared to corresponding quantum dot p-i-n photodiodes. Responsivity values up to 470 mA/W were measured at 1.31 µm using waveguide geometry, and ∼2.5 A/W at 850 nm, while the dark current was as low as 0.01 mA/cm2 at –2 V.

Metal-oxide field-effect phototransistors were also studied. These lateral detectors were processed with three terminals for source, drain and gate contacts. The Ge quantum dot layers were sandwiched between pseudomorphically grown SiGe quantum wells. The detector devices were processed using a multi-finger comb structure with an isolated gate contact on top of each finger and patterned metal contacts on the side edges for source and drain. It was found that the photo-responsivity was increased by a factor of more than 20 when a proper gate bias was applied. With VG above threshold, the measured response was 350 and >30 mA/W at 1.31 and 1.55 µm, respectively.

Properties of Si/Si1-xGex nanostructures were examined, in order to facilitate proper design of the above mentioned transistor types of photodetectors. The carrier recombination processes were characterized by photoluminescence measurements, and the results revealed a gradual change from spatially indirect to direct transitions in type II Si1-xGex islands with increased measurement temperature. Energy dispersive X-ray spectrometry of buried Ge islands produced at different temperatures indicated a gradual decrease of the Ge concentration with temperature, which was due to the enhanced intermixing of Si and Ge atoms. At a deposition temperature of 730°C the Ge concentration was as low as around 40 %.

Finally, the thermal stability of the Si/SiGe(110) material system, which is a promising candidate for future CMOS technology due to its high carrier mobility, was investigated by high resolution X-ray diffraction reciprocal space mapping. Anisotropic strain relaxation was observed with maximum in-plane lattice mismatch in the [001] direction.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2006
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1003
Keyword
SiGe, Ge dots, nanostructures, molecular beam epitaxy, photodetector
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-5909 (URN)91-85497-24-X (ISBN)
Public defence
2006-02-27, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Note
On the day of the defence date the status of article IV was Manuscript and the title was "A three-terminal Ge dot/SiGe quantum well MOSFET photodetector for near infrared light detection"; the status of article VI was Submitted and the title was "Band alignment studies in Si/Ge quantum dots based on optical and structural investigations"; the status of article VII was Manuscript and the title was "Thermal stability of SiGe/Si(110) investigated by high-resolution X-ray diffraction reciprocal space mapping".Available from: 2006-02-27 Created: 2006-02-27 Last updated: 2009-02-18

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis (Elfving)Link to Ph.D. thesis (Zhao)

Authority records BETA

Elfving, AndersZhao, MingHansson, Göran V.Ni, Wei-Xin

Search in DiVA

By author/editor
Elfving, AndersZhao, MingHansson, Göran V.Ni, Wei-Xin
By organisation
Surface and Semiconductor Physics The Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 409 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf