liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Controlled growth of metastable Ta3N5 semiconducting films
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, Faculty of Science & Engineering.
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The semiconductor tritantalum pentanitride (Ta3N5) is a promising material for green energy applications, specifically in the photoelectrolysis of water to produce oxygen and hydrogen. With a bandgap of approximately 2 eV, Ta3N5 is well-suited for efficient solar light absorption across a broad spectrum, and its band positions align favorably with the redox potential of water. Theoretically, this material could achieve a solar-to-hydrogen efficiency of up to 15.9%. However, the intricate nature of the Ta-N compounds and its metastability have limited research into the development of high-quality Ta3N5.   

In this thesis, the metastable Ta3N5 films were grown using two types of reactive magnetron sputtering techniques, direct current magnetron sputtering (DCMS) and high-power impulse magnetron sputtering (HiPIMS). Several key parameters were found to stabilize the formation of Ta3N5 phase, including the amount of oxygen in a gas mixture of Ar and N2, total working pressure, the Ta2O5 seed layer, and Ar/N2 partial pressure ratio.   

First, sputter growth of Ta-N film using a gas mixture of Ar and N2 without oxygen gas, only metallic -TaN and ε-TaN phase were formed. After introducing a small amount of oxygen in the process gas (~2% of total working pressure), the oxygen atoms, with higher electronegativity, replace nitrogen atoms to trigger and stabilize the formation of crystalline Ta3N5-type structure. In addition, with a suitable Ar/N2 partial pressure ratio for Ta3N5 formation, a low-degree fiber-textural orthorhombic Ta3N5 film was formed at the total working pressure range from 5 to 30 mTorr. At 40 mTorr total working pressure, the deposited film transforms to O-rich amorphous Ta-O-N compound. Second, the effect of Ta2O5 seed layer on the control of Ta-N phase was studied. The Ta3N5 phase can be grown only with a Ta2O5 seed layer assistance. Without the seed layer, only metallic TaN phases were formed no matter if the film was grown with or without oxygen assistance. Furthermore, domain epitaxial growth of Ta3N5 film on sapphire substrate was achieved through the control of seed layer’s thickness and crystallinity. While the film was grown on an amorphous TaOx seed layer, the Ta3N5 structure becomes polycrystalline. Third, the formation mechanism and epitaxial growth were studied through microstructural analysis in combination of first-principle density-functional theory calculations. Time-dependent growth evolution of Ta3N5 films combined with HRTEM and EDX measurement revealed that the nitridation of Ta2O5 seed layer and Ta-N film deposition occurs simultaneously at the beginning of the Ta3N5 deposition. Further deposition, the Ta3N5 layer was dominated by {00k} domain mixed with (113) domain with a thin TaN layer between Ta3N5 layer and substrate. Last, various Ta-N compounds were grown via controlling the Ar/N2 partial pressure ratio and total working pressure. When the reactive gas was changed from pure Ar to pure nitrogen, the deposited films transformed from Ta metal (mixed with TaOx), TaN, TaN mixed with Ta3N5 to polycrystalline Ta3N5 phase. 

To summarize the work conducted in this thesis, I have established a reproducible and precise method for cultivating metastable Ta3N5 through the magnetron sputter deposition technique. The elucidated growth mechanism holds promise for synthesizing Ta3N5 on diverse substrates using alternative techniques, ensuring a controlled and adaptable approach. 

Abstract [sv]

Halvledaren tritantalpentanitrid (Ta3N5) är ett lovande material för gröna energitillämpningar, speciellt i fotoelektrolys av vatten för att producera syre och väte. Med ett bandgap på cirka 2 eV är Ta3N5 väl lämpad för effektiv solljusabsorption över ett brett spektrum, och dess bandpositioner är väl anpassade till vattnets redoxpotential. Teoretiskt skulle detta material kunna uppnå en sol-till-väte-effektivitet på upp till 15,9 %. Den komplicerade situationen för Ta-N föreningarna och dess metastabilitet har dock begränsat forskningen om utvecklingen av högkvalitativ Ta3N5.  

I denna avhandling växtes de metastabila Ta3N5-filmerna med två typer av reaktiv magnetronsputtring, likströms magnetronsputtring (DCMS) och high-power impulse magnetron sputtering (HiPIMS). Flera nyckelparametrar visade sig stabilisera bildandet av Ta3N5-fasen, däribland mängden syre i en gasblandning av Ar och N2, totalt arbetstryck, Ta2O5 initiallager och Ar/N2-partialtrycksförhållande.  

Initialt växtes Ta-N-filmer med användning av en gasblandning av Ar och N2 utan syrgas, där endast metallisk -TaN och ε-TaN-fas bildades. Efter att ha infört en liten mängd syre i processgasen (syrekvot ~2%), ersätter syreatomerna, med högre elektronegativitet, kväveatomer för att trigga och stabilisera bildningen av kristallin struktur av Ta3N5. Dessutom, med ett lämpligt Ar/N2-partialtrycksförhållande vid tillväxt av Ta3N5, bildades en låggradig fibertexturell ortorhombisk Ta3N5-film vid det totala arbetstryckintervallet mellan 5 till 30 mTorr. Vid 40 mTorr totalt tryck omvandlas den avsatta filmen till O-rik amorf Ta-O-N-föreningsfilm. Sedan studerades effekten av Ta2O5 initiallager på kontrollen av Ta-N-fasen. Ta3N5-fasen kan endast tillväxas med hjälp av initiallager. Utan initiallager bildades endast metalliska TaN-faser oavsett om filmen odlades med eller utan syreassistans. Dessutom uppnåddes domänepitaxiell tillväxt av Ta3N5-film på safirsubstrat genom kontroll av initiallager tjocklek och kristallinitet. Medan filmen odlades på ett amorft TaOx initiallager blir Ta3N5-strukturen polykristallin. Därefter studerades bildningsmekanismen och epitaxiell tillväxt genom mikrostrukturanalys i kombination av densitetsfunktionella teoriberäkningar med first-principle. Tidsberoende tillväxtutveckling av Ta3N5-filmer kombinerat med HRTEM- och EDX-mätningar påvisade att nitrideringen av Ta2O5 initiallager och Ta-N- filmtillväxt sker samtidigt i början av Ta3N5-tillväxten. Ytterligare tillväxt, Ta3N5-skiktet dominerades av {00k}-domäner blandat med (113)-domäner med ett tunt TaN-skikt mellan Ta3N5-skiktet och substratet. Slutligen odlades olika Ta-N-föreningar med fokus på att kontrollera Ar/N2-partialtrycksförhållandet och totalt arbetstryck. När den reaktiva gasen ändrades från rent Ar till rent kväve, omvandlades de avsatta filmerna från Ta-metall (blandat med TaOx), TaN, TaN blandat med Ta3N5 till polykristallin Ta3N5-fas.  

För att sammanfatta arbetet har jag etablerat en omproducerbar och exakt metod för att odla metastabil Ta3N5 genom magnetronsputter deponering. Tillväxtmekanismen påvisar syntetisering av Ta3N5 på olika substrat med hjälp av alternativa tekniker, vilket säkerställer ett kontrollerat och anpassningsbart tillvägagångssätt.   

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2024. , p. 52
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 2367
National Category
Inorganic Chemistry
Identifiers
URN: urn:nbn:se:liu:diva-199810ISBN: 9789180754941 (print)ISBN: 9789180754958 (electronic)OAI: oai:DiVA.org:liu-199810DiVA, id: diva2:1821938
Public defence
2024-01-26, Planck, F-building, Campus Valla, Linköping, 09:15 (English)
Opponent
Supervisors
Note

Funding: This work is supported by Vetenskapsrådet (grant numbers 2018-04198 and 2021-00357), Energimyndigheten (grant number 46658-1), and Stiftelsen Olle Engkvist Byggmästare (grant number 197-0210). The Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU 2009-00971) is acknowledged for financial support.

Available from: 2023-12-21 Created: 2023-12-21 Last updated: 2023-12-21Bibliographically approved
List of papers
1. Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering: The role of oxygen on structure, composition, and optical properties
Open this publication in new window or tab >>Orthorhombic Ta3-xN5-yOy thin films grown by unbalanced magnetron sputtering: The role of oxygen on structure, composition, and optical properties
Show others...
2021 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 406, article id 126665Article in journal (Refereed) Published
Abstract [en]

Direct growth of orthorhombic Ta3N5-type Ta-O-N compound thin films, specifically Ta3-xN5-yOy, on Si and sapphire substrates with various atomic fractions is realized by unbalanced magnetron sputtering. Low-degree fiber-textural Ta3-xN5-yOy films were grown through reactive sputtering of Ta in a gas mixture of N-2, Ar, and O-2 with keeping a partial pressure ratio of 3:2:0.1 in a total working pressure range of 5-30 mTorr. With increasing total pressure from 5 to 30 mTorr, the atomic fraction of O in the as-grown Ta3-xN5-yOy films was found to increase from 0.02 to 0.15 while that of N and Ta decrease from 0.66 to 0.54 and 0.33 to 0.31, respectively, leading to a decrease in b lattice constant up to around 1.3%. Metallic TaNx phases were formed without oxygen. For a working pressure of 40 mTorr, an amorphous, O-rich Ta-N-O compound film with a high O fraction of similar to 0.48, was formed, mixed with non-stoichiometric TaON and Ta2O5. By analyzing the plasma discharge, the increasing O incorporation is associated with oxide formation on top of the Ta target due to a higher reactivity of Ta with O than with N. The increase of O incorporation in the films also leads to a optical bandgap widening from similar to 2.22 to similar to 2.96 eV, which is in agreement with the compositional and structural changes from a crystalline Ta3-xN5-yOy to an amorphous O-rich Ta-O-N compound.

Place, publisher, year, edition, pages
ELSEVIER SCIENCE SA, 2021
Keywords
Ta3N5; Magnetron sputtering; XRD; XPS; ERDA; Optical absorption spectroscopy
National Category
Inorganic Chemistry
Identifiers
urn:nbn:se:liu:diva-173006 (URN)10.1016/j.surfcoat.2020.126665 (DOI)000604750600025 ()
Note

Funding Agencies|Vetenskapseddet [2018-04198]; Energimyndigheten [46658-1]; Stiftelsen 011e Engkvist Byggmastare [197-0210]; Linkoping University Library; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]; VR-RFI [821-2012-5144, 2017-00646_9]; Swedish Foundation for Strategic Research (SSF)Swedish Foundation for Strategic Research [RIF14-0053, 5E13-0333]

Available from: 2021-01-27 Created: 2021-01-27 Last updated: 2023-12-21
2. Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate
Open this publication in new window or tab >>Domain epitaxial growth of Ta3N5 film on c-plane sapphire substrate
Show others...
2022 (English)In: Surface & Coatings Technology, ISSN 0257-8972, E-ISSN 1879-3347, Vol. 443, article id 128581Article in journal (Refereed) Published
Abstract [en]

Tritantalum pentanitride (Ta3N5) semiconductor is a promising material for photoelectrolysis of water with high efficiency. Ta3N5 is a metastable phase in the complex system of TaN binary compounds. Growing stabilized single-crystal Ta3N5 films is correspondingly challenging. Here, we demonstrate the growth of a nearly single-crystal Ta3N5 film with epitaxial domains on c-plane sapphire substrate, Al2O3(0001), by magnetron sputter epitaxy. Introduction of a small amount ~2% of O2 into the reactive sputtering gas mixed with N2 and Ar facilitates the formation of a Ta3N5 phase in the film dominated by metallic TaN. In addition, we indicate that a single-phase polycrystalline Ta3N5 film can be obtained with the assistance of a Ta2O5 seed layer. With controlling thickness of the seed layer smaller than 10 nm and annealing at 1000 °C, a crystalline β phase Ta2O5 was formed, which promotes the domain epitaxial growth of Ta3N5 films on Al2O3(0001). The mechanism behind the stabilization of the orthorhombic Ta3N5 structure resides in its stacking with the ultrathin seed layer of orthorhombic β-Ta2O5, which is energetically beneficial and reduces the lattice mismatch with the substrate.

Place, publisher, year, edition, pages
Elsevier, 2022
Keywords
Ta3N5, Sputtering, MSE, XRD, XPS, Water splitting, Single crystal
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-188556 (URN)10.1016/j.surfcoat.2022.128581 (DOI)000868328000003 ()
Note

Funding: Swedish Research Council [2018-04198, 2021-00357]; Swedish Energy Agency [46658-1]; Stiftelsen Olle Engkvist Byggmastare [197-0210]; Linkoping University Library; Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linkoping University [SFO-Mat-LiU 2009-00971]

Available from: 2022-09-16 Created: 2022-09-16 Last updated: 2023-12-21Bibliographically approved
3. HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate
Open this publication in new window or tab >>HiPIMS-grown AlN buffer for threading dislocation reduction in DC-magnetron sputtered GaN epifilm on sapphire substrate
Show others...
2023 (English)In: Vacuum, ISSN 0042-207X, E-ISSN 1879-2715, Vol. 217, article id 112553Article in journal (Refereed) Published
Abstract [en]

Gallium nitride (GaN) epitaxial films on sapphire (Al2O3) substrates have been grown using reactive magnetron sputter epitaxy with a liquid Ga target. Threading dislocations density (TDD) of sputtered GaN films was reduced by using an inserted high-quality aluminum nitride (AlN) buffer layer grown by reactive high power impulse magnetron sputtering (R-HiPIMS) in a gas mixture of Ar and N2. After optimizing the Ar/N2 pressure ratio and deposition power, a high-quality AlN film exhibiting a narrow full-width at half-maximum (FWHM) value of the double-crystal x-ray rocking curve (DCXRC) of the AlN(0002) peak of 0.086° was obtained by R-HiPIMS. The mechanism giving rise the observed quality improvement is attributed to the enhancement of kinetic energy of the adatoms in the deposition process when operated in a transition mode. With the inserted HiPIMS-AlN as a buffer layer for direct current magnetron sputtering (DCMS) GaN growth, the FWHM values of GaN(0002) and (10 1‾ 1) XRC decrease from 0.321° to 0.087° and from 0.596° to 0.562°, compared to the direct growth of GaN on sapphire, respectively. An order of magnitude reduction from 2.7 × 109 cm−2 to 2.0 × 108 cm−2 of screw-type TDD calculated from the FWHM of the XRC data using the inserted HiPIMS-AlN buffer layer demonstrates the improvement of crystal quality of GaN. The result of TDD reduction using the HiPIMS-AlN buffer was also verified by weak beam dark-field (WBDF) cross-sectional transmission electron microscopy (TEM).

Place, publisher, year, edition, pages
PERGAMON-ELSEVIER SCIENCE LTD, 2023
Keywords
GaN; Magnetron sputtering; HiPIMS; Dislocations; XRCTEM
National Category
Condensed Matter Physics
Identifiers
urn:nbn:se:liu:diva-197990 (URN)10.1016/j.vacuum.2023.112553 (DOI)001072124300001 ()
Funder
Swedish Research CouncilSwedish Energy AgencyThe Swedish Foundation for International Cooperation in Research and Higher Education (STINT)Carl Tryggers foundation Olle Engkvists stiftelse
Note

Funding agencies: This research was funded by Vetenskapsrådet (grant number 2018-04198), Energimyndigheten (grant number 46658-1), Carl Tryggers Stiftelse (grant number CTS 22:2029) and Stiftelsen Olle Engkvist Byggmästare (grant number 197-0210). The Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU 2009-00971) is acknowledged for financial support. We acknowledge STINT foundation, Sweden, for supporting this international collaboration (grant number: MG2019-8485).

Available from: 2023-09-20 Created: 2023-09-20 Last updated: 2023-12-21

Open Access in DiVA

No full text in DiVA

Authority records

Chang, Jui-Che

Search in DiVA

By author/editor
Chang, Jui-Che
By organisation
Thin Film PhysicsFaculty of Science & Engineering
Inorganic Chemistry

Search outside of DiVA

GoogleGoogle Scholar

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 817 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf