Sputter-deposited transition metal diborides are subject of increasing attention for protective hard coatings. However, they suffer from high brittleness and rapid oxidation. Alloying with Ta increases their toughness, but their oxidation resistance requires further enhancement. Here, the influence of adding Si on the microstructure, mechanical, and oxidation properties of quaternary Zr1-(x + y)TaxSiyBz thin films grown by hybrid high-power impulse/DC magnetron co-sputtering (ZrB2-DCMS/Ta-HiPIMS/Si-DCMS) is studied. The layers are deposited at two different conditions of Ta-target HiPIMS powers and frequencies (30 W/100 Hz and 60 W/200 Hz series) with Si-target DCMS powers P-Si = 0, 10, 15, and 20 W, while the ZrB2-target DCMS power is maintained constant at 200 W. For the 30 W/100 Hz series, x decreases from 0.20 to 0.15, y increases from 0 to 0.22, and z decreases from 2.0 to 1.8 by increasing P-Si. The Ta/metal ratio remains constant at x = 0.3 for the 60 W/200 Hz series, while y increases from 0 to 0.1, and z decreases from 1.7 to 1.4. All layers show columnar growth and crystallize in a hexagonal-diboride structure, but crystal orientations change by increasing P-Si. The 60 W/200 Hz series have much denser microstructure than the 30 W/100 Hz series. The 60 W/200 Hz series have high hardness values (>= 35 GPa), while the hardness of the 30 W/100 Hz series significantly decreases from similar to 37 to similar to 21 GPa as a function of P-Si. Zr0.7Ta0.3B1.7 has markedly better high-temperature oxidation resistance than Zr0.8Ta0.2B2.0 due to the formation of protective B-containing oxide scales. Alloying with Si considerably decreases the oxidation rate of the 30 W/100 Hz series owing to the formation of oxide scales containing a ZrSiO4 phase with a thin Si oxide top layer; however, the oxidation rate increases for the 60 W/200 Hz series as these quaternary alloys do not contain sufficiently high B and Si to form oxidation protective barriers.
Funding Agencies|Vetenskapsrdet10.13039/501100004359 [2019-00191, 2021-00357]; Swedish Research Council (VR); University of Cambridge's "Knowledge Exchange and Impact award"-Energy IRC Grants scheme [2022]; Cambridge CAPE BlueSky Research Award