liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Face Recognition for Mobile Phone Applications
Linköping University, Department of Science and Technology.
2008 (English)Independent thesis Advanced level (degree of Magister), 20 points / 30 hpStudent thesis
Abstract [sv]

Att applicera ansiktsigenkänning direkt på en mobiltelefon är en utmanande uppgift, inte minst med tanke på den begränsade minnes- och processorkapaciteten samt den stora variationen med avseende på ansiktsuttryck, hållning och ljusförhållande i inmatade bilder.

Det är fortfarande långt kvar till ett färdigutvecklat, robust och helautomatiskt ansiktsigenkänningssystem för den här miljön. Men resultaten i det här arbetet visar att genom att plocka ut feature-värden från lokala regioner samt applicera en välgjord warpstrategi för att minska problemen med variationer i position och rotation av huvudet, är det möjligt att uppnå rimliga och användbara igenkänningsnivåer. Speciellt för ett halvautomatiskt system där användaren har sista ordet om vem personen på bilden faktiskt är.

Med ett galleri bestående av 85 personer och endast en referensbild per person nådde systemet en igenkänningsgrad på 60% på en svårklassificerad serie testbilder. Totalt 73% av gångerna var den rätta individen inom de fyra främsta gissningarna.

Att lägga till extra referensbilder till galleriet höjer igenkänningsgraden rejält, till nästan 75% för helt korrekta gissningar och till 83,5% för topp fyra. Detta visar att en strategi där inmatade bilder läggs till som referensbilder i galleriet efterhand som de identifieras skulle löna sig ordentligt och göra systemet bättre efter hand likt en inlärningsprocess.

Detta exjobb belönades med pris för "Bästa industrirelevanta bidrag" vid Svenska sällskapet för automatiserad bildanalys årliga konferens i Lund, 13-14 mars 2008.

Abstract [en]

Applying face recognition directly on a mobile phone is a challenging proposal due to the unrestrained nature of input images and limitations in memory and processor capabilities.

A robust, fully automatic recognition system for this environment is still a far way off. However, results show that using local feature extraction and a warping scheme to reduce pose variation problems, it is possible to capitalize on high error tolerance and reach reasonable recognition rates, especially for a semi-automatic classification system where the user has the final say.

With a gallery of 85 individuals and only one gallery image per individual available the system is able to recognize close to 60 % of the faces in a very challenging test set, while the correct individual is in the top four guesses 73% of the time.

Adding extra reference images boosts performance to nearly 75% correct recognition and 83.5% in the top four guesses. This suggests a strategy where extra reference images are added one by one after correct classification, mimicking an online learning strategy.

Place, publisher, year, edition, pages
Institutionen för teknik och naturvetenskap , 2008. , 46 p.
Keyword [en]
image analysis, computer vision, face recognition
National Category
Computer Vision and Robotics (Autonomous Systems)
Identifiers
URN: urn:nbn:se:liu:diva-11850ISRN: LiU-ITN-TEK-A--08/064-SEOAI: oai:DiVA.org:liu-11850DiVA: diva2:18258
Presentation
2008-05-13, Norrköping, 11:00
Uppsok
teknik
Supervisors
Examiners
Available from: 2008-05-20 Created: 2008-05-20

Open Access in DiVA

fulltext(1154 kB)812 downloads
File information
File name FULLTEXT01.pdfFile size 1154 kBChecksum SHA-1
c73e361d226dc399157c0648f1acda19476c00f8da4ef04477ca7398111841e2eccb6110
Type fulltextMimetype application/pdf

By organisation
Department of Science and Technology
Computer Vision and Robotics (Autonomous Systems)

Search outside of DiVA

GoogleGoogle Scholar
Total: 812 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 743 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf