A framework for tightly integrated motion modeclassification and state estimation in motion-constrained inertial navigation systems is presented. The framework uses a jump Markov model to describe the navigation system’s motion modeand navigation state dynamics with a single model. A bank of Kalman filters is then used for joint inference of the navigation state and the motion mode. A method for learning unknown parameters in the jump Markov model, such as the motion mode transition probabilities, is also presented. The application of the proposed framework is illustrated via two examples. The first example is a foot-mounted navigation system that adapts its behavior to different gait speeds. The second example is a foot-mounted navigation system that detects when the user walks on flat ground and locks the vertical position estimate accordingly. Both examples show that the proposed framework provides significantly better position accuracy than a standard zero-velocity aided inertial navigation system. More importantly, the examples show that the proposed framework provides a theoretically well-grounded approach for developing new motion-constrained inertial navigation systems that can learn different motion patterns.