liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Trophically Unique Species Are Vulnerable to Cascading Extinction
Department of Animal and Plant Sciences, University of Sheffield, United Kingdom.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Theoretical Biology. Linköping University, The Institute of Technology.
2008 (English)In: American Naturalist, ISSN 0003-0147, E-ISSN 1537-5323, Vol. 171, no 5, 568-579 p.Article in journal (Refereed) Published
Abstract [en]

Understanding which species might become extinct and the consequences of such loss is critical. One consequence is a cascade of further, secondary extinctions. While a significant amount is known about the types of communities and species that suffer secondary extinctions, little is known about the consequences of secondary extinctions for biodiversity. Here we examine the effect of these secondary extinctions on trophic diversity, the range of trophic roles played by the species in a community. Our analyses of natural and model food webs show that secondary extinctions cause loss of trophic diversity greater than that expected from chance, a result that is robust to variation in food web structure, distribution of interactions strengths, functional response, and adaptive foraging. Greater than expected loss of trophic diversity occurs because more trophically unique species are more vulnerable to secondary extinction. This is not a straightforward consequence of these species having few links with others but is a complex function of how direct and indirect interactions affect species persistence. A positive correlation between a species’ extinction probability and the importance of its loss defines high-risk species and should make their conservation a priority.

Place, publisher, year, edition, pages
University of Chicago Press , 2008. Vol. 171, no 5, 568-579 p.
Keyword [en]
biodiversity, redundancy, stability, food webs, species deletions
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-11923DOI: 10.1086/587068ISI: 000255212900004OAI: oai:DiVA.org:liu-11923DiVA: diva2:18307
Note

Original publication: Owen L. Petchey, Anna Eklöf, Charlotte Borrvall and Bo Ebenman, Trophically Unique Species Are Vulnerable to Cascading Extinction, 2008, American Naturalist, (171), 5, 568-579. http://dx.doi.org/10.1086/587068. Copyright © 2008. University of Chicago Press. All rights reserved

Available from: 2008-05-28 Created: 2008-05-28 Last updated: 2017-04-19Bibliographically approved
In thesis
1. Species extinctions in food webs: local and regional processes
Open this publication in new window or tab >>Species extinctions in food webs: local and regional processes
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Loss of biodiversity is one of the most severe threats to the ecosystems of the world. The major causes behind the high population and species extinction rates are anthropogenic activities such as overharvesting of natural populations, pollution, climate change and destruction and fragmentation of natural habitats. There is an urgent need of understanding how these species losses affect the ecological structure and functioning of our ecosystems. Ecological communities exist in a landscape but the spatial aspects of community dynamics have until recently to large extent been ignored. However, the community’s response to species losses is likely to depend on both the structure of the local community as well as its interactions with surrounding communities. Also the characteristics of the species going extinct do affect how the community can cope with species loss. The overall goal of the present work has been to investigate how both local and regional processes affect ecosystem stability, in the context of preserved biodiversity and maintained ecosystem functioning. The focus is particularly on how these processes effects ecosystem’s response to species loss. To accomplish this goal I have formulated and analyzed mathematical models of ecological communities. We start by analyzing the local processes (Paper I and II) and continue by adding the regional processes (Paper III, IV and V).

In Paper I we analyze dynamical models of ecological communities of different complexity (connectance) to investigate how the structure of the communities affects their resistance to species loss. We also investigate how the resistance is affected by the characteristics, like trophic level and connectivity, of the initially lost species. We find that complex communities are more resistant to species loss than simple communities. The loss of species at low trophic levels and/or with high connectivity (many links to other species) triggers, on average, the highest number of secondary extinctions. We also investigate the structure of the post-extinction community. Moreover, we compare our dynamical analysis with results from topological analysis to evaluate the importance of incorporating dynamics when assessing the risk and extent of cascading extinctions.

The characteristics of a species, like its trophic position and connectivity (number of ingoing and outgoing trophic links) will affect the consequences of its loss as well as its own vulnerability to secondary extinction. In Paper II we characterize the species according to their trophic/ecological uniqueness, a new measure of species characteristic we develop in this paper. A species that has no prey or predators in common with any other species in the community will have a high tropic uniqueness. Here we examine the effect of secondary extinctions on an ecological community’s trophic diversity, the range of different trophic roles played by the species in a community. We find that secondary extinctions cause loss of trophic diversity greater than expected from chance. This occurs because more tropically unique species are more vulnerable to secondary extinctions.

In Paper III, IV and V we expand the analysis to also include the spatial dimension. Paper III is a book chapter discussing spatial aspects of food webs. In Paper IV we analyze how metacommunities (a set of local communities in the landscape connected by species dispersal) respond to species loss and how this response is affected by the structure of the local communities and the number of patches in the metacommunity. We find that the inclusion of space reduces the risk of global and local extinctions and that lowly connected communities are more sensitive to species loss.

In Paper V we investigate how the trophic structure of the local communities, the spatial structure of the landscape and the dispersal patterns of species affect the risk of local extinctions in the metacommunity. We find that the pattern of dispersal can have large effects on local diversity. Dispersal rate as well as dispersal distance are important: low dispersal rates and localized dispersal decrease the risk of local and global extinctions while high dispersal rates and global dispersal increase the risk. We also show that the structure of the local communities plays a significant role for the effects of dispersal on the dynamics of the metacommunity. The species that are most affected by the introduction of the spatial dimension are the top predators.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 45 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1291
Keyword
Extinction, food web, metacommunity, dispersal, species loss, migration, habitat fragmentation, connectance
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-51815 (URN)978-91-7393-480-0 (ISBN)
Public defence
2009-12-18, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-11-24 Created: 2009-11-19 Last updated: 2009-11-24Bibliographically approved

Open Access in DiVA

fulltext(552 kB)484 downloads
File information
File name FULLTEXT01.pdfFile size 552 kBChecksum
Type fulltextMimetype application/pdf

Other links

Publisher's full textLink to Ph.D. Thesis

Authority records BETA

Eklöf, AnnaBorrvall, CharlotteEbenman, Bo

Search in DiVA

By author/editor
Eklöf, AnnaBorrvall, CharlotteEbenman, Bo
By organisation
Theoretical BiologyThe Institute of Technology
In the same journal
American Naturalist
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 484 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 333 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf