liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Enzymatic biofuel cells embedded polymer-based soft actuators
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-6490-8603
Linköping University, Department of Physics, Chemistry and Biology, Sensor and Actuator Systems. Linköping University, Faculty of Science & Engineering.ORCID iD: 0000-0002-2071-7768
2022 (English)Conference paper, Oral presentation only (Other academic)
Abstract [en]

Enzymatic biofuel cells are presented as an untethered alternative energy source that could power small implantable or wearable medical devices. However, most of these catalytic processes do not provide with enough energy to power common small electronic-mechanical devices. On the other hand, conducting polymer-based actuators are of great interest for their biocompatibility, flexibility, processability, possibility to be miniaturized and low power consumption. So far, these artificial muscles have been driven by external power sources that prevent them for being completely autonomous. There is a need for a novel power source to elaborate actuators that could use physiological processes as a driving force. These soft actuators’ low power consumption matches the electrical power generated by the biocatalysis of some enzymes, such as glucose oxidase and laccase in presence of glucose and oxygen in aqueous media. Here, we present the latest results in the development of polypyrrole-based soft actuators powered by enzymatic biofuel cells. The actuator consists of a tri-layer conductive substrate on which the polypyrrole is electrodeposited in both sides. The polypyrrole layers act as the active part, expanding and contracting upon a redox reaction, resulting in a bending movement. Tetrathiofulvlene-7,7,8,8-tetracyanoquinodimethane (TTF-TCNQ) and 2,2′-azino-di-(3-ethylbenzthiazoline sulfonic acid) (ABTS) electron transfer mediators are cast on the surface of the polypyrrole to help the electron transmission. The glucose oxidase and laccase enzymes are immobilized in the modified-conducting polymer surface, integrating the electrode to the actuator. The bio-catalysis of enzymes in presence of glucose and oxygen in aqueous solution provides the actuator with the electrons needed for the redox reaction, converting the chemical energy into mechanical energy, i.e., movement. The glucose-self-powered soft actuator may contribute to the development of more complex implantable, ingestible, or wearable biomedical devices such as cardio-stimulators, insulin pumps, or muscle implants.

Place, publisher, year, edition, pages
2022.
National Category
Physical Chemistry Textile, Rubber and Polymeric Materials
Identifiers
URN: urn:nbn:se:liu:diva-200604OAI: oai:DiVA.org:liu-200604DiVA, id: diva2:1833615
Conference
242nd ECS Meeting, Atlanta, 9-13 October, 2022.
Available from: 2024-02-01 Created: 2024-02-01 Last updated: 2024-02-16Bibliographically approved

Open Access in DiVA

No full text in DiVA

Authority records

Amaia Beatriz, Ortega-SantosMartinez, Jose GabrielJager, Edwin

Search in DiVA

By author/editor
Amaia Beatriz, Ortega-SantosMartinez, Jose GabrielJager, Edwin
By organisation
Sensor and Actuator SystemsFaculty of Science & Engineering
Physical ChemistryTextile, Rubber and Polymeric Materials

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf