liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Haptic Force Feedback Interaction for Planning in Maxillo-Facial Surgery
Linköping University, Department of Science and Technology.
Linköping University, Department of Science and Technology.
2003 (English)Independent thesis Basic level (professional degree)Student thesisAlternative title
Haptisk Återkoppling för Planering av Käkkirurgi (Swedish)
Abstract [en]

New Virtual Reality technologies provide the possibility of widening access to information in data. Haptics, the technology of touch, could be an interesting future aid and have large impact on medical applications. The use of haptic devices allows computer users to use their sense of touch, in order to feel virtual objects with a high degree of realism.

The aim of the thesis is to investigate the potential deployment and the benefits of using haptic force feedback instruments in maxillo-facial surgery. Based on a produced test application, the thesis includes suggested recommendations for future haptic implementations.

At the Department of Maxillo-Facial Surgery, at the Karolinska Hospital in Stockholm, Virtual Reality technologies are used as an aid to a limited extent during the production of physical medical models. The physical medical models are produced with Rapid Prototyping techniques. This process is examined and described in the thesis. Moreover, the future of the physical medical models is outlined, and a future alternative visualizing patient data in 3D and use haptics as an interaction tool, is described. Furthermore, we have examined the present use of haptic technology in medicine, and the benefits of using the technology as an aid for diagnostic and treatment planning.

Based on a presented literature study and an international outlook, we found that haptics could improve the management of medical models. The technology could be an aid, both for physical models as well as for virtual models. We found three different ways of implementing haptics in maxillo-facial surgery. A haptic system could be developed in order to only manage virtual medical models and be an alternative solution to the complete Rapid Prototyping process. A haptic system could serve as a software, handling the image processing and interfacing from a medical scanner to an Rapid Prototyping system. A haptic system could be developed as an alternative interaction tool, which could be implemented as an additional function in currently used image processing software, in order to improve the management of virtual medical models before the Rapid Prototyping process.

An implementation for planning and examination in maxillo-facial surgery, using haptic force feedback interaction, is developed and evaluated. The test implementation is underlying our aim of investigating the potential deployment and the benefits of using haptic force feedback instruments in maxillo-facial surgery.

After discussing the possible future of our implementation and the future of haptic force feedback in maxillo-facial surgery, a recommendation is given as a conclusion of our total work.

Place, publisher, year, edition, pages
Institutionen för teknik och naturvetenskap , 2003. , 62 p.
Keyword [en]
Datorteknik, Haptic technology, physical medical models, virtual medical models, diagnostic and treatment planning tool, Rapid Prototyping
Keyword [sv]
National Category
Computer Engineering
URN: urn:nbn:se:liu:diva-2036ISRN: LITH-ITN-MT-EX--03/017--SEOAI: diva2:19364
Available from: 2003-11-27 Created: 2003-11-27

Open Access in DiVA

fulltext(1005 kB)868 downloads
File information
File name FULLTEXT01.pdfFile size 1005 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
Department of Science and Technology
Computer Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 868 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 459 hits
ReferencesLink to record
Permanent link

Direct link