liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Bridging Dimensions in Organic Electronics: Assembly of Electroactive Polymer Nanodevices from Fluids
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Chemistry. Linköping University, Faculty of Science & Engineering.
Linköping University, Department of Physics, Chemistry and Biology, Biomolecular and Organic Electronics. Linköping University, The Institute of Technology.
Show others and affiliations
2009 (English)In: Nano letters (Print), ISSN 1530-6984, E-ISSN 1530-6992, Vol. 9, no 2, 631-635 p.Article in journal (Refereed) Published
Abstract [en]

Processing and patterning of electroactive materials from solvents is a hallmark of flexible organic electronics,(1) and commercial applications based on these properties are now emerging. Printing and ink-jetting are today preferred technologies for patterning, but these limit the formation of nanodevices, as they give structures way above the micrometer lateral dimension. There is therefore a great need for cheap, large area patterning of nanodevices and methods for top-down registration of these. Here we demonstrate large area patterning of connected micro/nanolines and nanotransistors from the conducting polymer PEDOT, assembled from fluids. We thereby simultaneously solve problems of large area nanopatterning, and nanoregistration.

Place, publisher, year, edition, pages
2009. Vol. 9, no 2, 631-635 p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-16960DOI: 10.1021/nl802919wOAI: oai:DiVA.org:liu-16960DiVA: diva2:200847
Available from: 2009-02-28 Created: 2009-02-27 Last updated: 2015-05-29
In thesis
1. Organic electronics on micro and nano fibers: from e-textiles to biomolecular nanoelectronics
Open this publication in new window or tab >>Organic electronics on micro and nano fibers: from e-textiles to biomolecular nanoelectronics
2008 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Research in the field of conjugated polymers (CPs) has led to the emergence of a number of interesting research areas and commercial applications, including solar cells, flexible displays, printed electronics, biosensors, e-textiles and more.

Some of the advantages of organic electronics materials, as compared to their inorganic counterparts, include high elasticity, and mechanical flexibility, which allows for a natural integration of CPs into fabrics, making them ideal for e-texile. In this thesis, a novel approach for creating transistors is presented, through the construction of electrolyte gated transistors, directly embedded on functional textile fibers. Furthermore theoretical and experimental results of the integration of functional woven devices based on these transistors are shown. The realization of woven digital logic and design schemes for devices that can be placed inside living tissue, for applications such as neural communication, are demonstrated.

Reducing feature sizes in organic electronics is necessity just as in conventional microelectronics, where Moore's law has been the most impressive demonstration of this over the past decades. Here the scheme of self-assembly (SA) of biomolecular/CP hybrid nano-structures is used for creating nano electronics. It is demonstrated that proteins in the form of amyloid fibrils can be coated with the highly conducting polythiophene derivative (PEDOT-S) through molecular self-assembly in water, to form conducting nanowire networks and nanodevices at molecular dimensions. In a second SA scheme, large area patterning of connected micro-nano lines and nano transistors from the conducting polymer PEDOT-S is demonstrated through assembly of these from fluids using soft lithography. Thereby the problems of large area nano patterning, and nano registration are solved for organic electronics. The construction of functional nanoscopic materials and components through molecular self-assembly has the potential to deliver totally new concepts, and may eventually allow cheap mass production of complex three dimensional nano electronic materials and devices.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2008. 102 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1224
National Category
Natural Sciences
Identifiers
urn:nbn:se:liu:diva-17661 (URN)978-91-7393-763-4 (ISBN)
Public defence
2008-11-21, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-09-21 Created: 2009-04-08 Last updated: 2010-08-30Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Hamedi, MahiarKarlsson, Roger HAsberg, PeterInganäs, Olle

Search in DiVA

By author/editor
Hamedi, MahiarKarlsson, Roger HAsberg, PeterInganäs, Olle
By organisation
Biomolecular and Organic ElectronicsThe Institute of TechnologyChemistryFaculty of Science & Engineering
In the same journal
Nano letters (Print)
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 381 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf