liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Role of noncollinear magnetization for the first-order electric-dipole hyperpolarizability at the four-component Kohn-Sham density functional theory level
CNRS.
CNRS.
Linköping University, Department of Physics, Chemistry and Biology, Computational Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Computational Physics . Linköping University, The Institute of Technology.
2009 (English)In: JOURNAL OF CHEMICAL PHYSICS, ISSN 0021-9606 , Vol. 130, no 2, 024109- p.Article in journal (Refereed) Published
Abstract [en]

The quadratic response function has been derived and implemented at the adiabatic four-component Kohn-Sham density functional theory level with inclusion of noncollinear spin magnetization and gradient corrections in the exchange-correlation functional-a work that is an extension of our previous report where magnetization dependencies in the exchange-correlation functional were ignored [J. Henriksson, T. Saue, and P. Norman, J. Chem. Phys. 128, 024105 (2008)]. The electric-field induced second-harmonic generation experiments on CF3Cl and CF3Br are addressed by a determination of (beta) over bar (-2 omega;omega,omega) for a wavelength of 694.3 nm, and the same property is also determined for CF3I. The relativistic effects on the static hyperpolarizability for the series of molecules amount to 1%, 5%, and 9%, respectively. At the experimental wavelength, the contributions to beta due to the magnetization dependence in the exchange-correlation functional are negligible for CF3Cl and CF3Br and small for CF3I. The noticeable effect of magnetization in the latter case is attributed to a near two-photon resonance with the excited state 1 E-3 (nonrelativistic notation). It is emphasized, however, that the effect of magnetization on beta for CF3I is negligible both in comparison to the total relativistic correction as well as to the effects of electron correlation. It is concluded that, in calculations of hyperpolarizabilities under nonresonant conditions, the magnetization dependence in the exchange-correlation functional may be ignored.

Place, publisher, year, edition, pages
2009. Vol. 130, no 2, 024109- p.
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:liu:diva-16966DOI: 10.1063/1.3054302OAI: oai:DiVA.org:liu-16966DiVA: diva2:200852
Available from: 2009-02-28 Created: 2009-02-27 Last updated: 2009-02-28

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Henriksson, JohanNorman , Patrick

Search in DiVA

By author/editor
Henriksson, JohanNorman , Patrick
By organisation
Computational Physics The Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 189 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf