liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Evaluation and Development of Methods for Identification of Biochemical Networks
Linköping University, The Department of Physics, Chemistry and Biology.
2005 (English)Independent thesis Basic level (professional degree)Student thesisAlternative title
Evaluering och utveckling av metoder för identifiering av biokemiska nätverk (Swedish)
Abstract [en]

Systems biology is an area concerned with understanding biology on a systems level, where structure and dynamics of the system is in focus. Knowledge about structure and dynamics of biological systems is fundamental information about cells and interactions within cells and also play an increasingly important role in medical applications.

System identification deals with the problem of constructing a model of a system from data and an extensive theory of particularly identification of linear systems exists.

This is a master thesis in systems biology treating identification of biochemical systems. Methods based on both local parameter perturbation data and time series data have been tested and evaluated in silico.

The advantage of local parameter perturbation data methods proved to be that they demand less complex data, but the drawbacks are the reduced information content of this data and sensitivity to noise. Methods employing time series data are generally more robust to noise but the lack of available data limits the use of these methods.

The work has been conducted at the Fraunhofer-Chalmers Research Centre for Industrial Mathematics in Göteborg, and at the division of Computational Biology at the Department of Physics and Measurement Technology, Biology, and Chemistry at Linköping University during the autumn of 2004.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi , 2005.
Keyword [en]
Bioinformatics, Systems Biology, System Identification, Biochemical Networks
Keyword [sv]
National Category
Bioinformatics (Computational Biology)
URN: urn:nbn:se:liu:diva-2811ISRN: LITH-IFM-EX--05/1378--SEOAI: diva2:20153
Available from: 2005-03-22 Created: 2005-03-22

Open Access in DiVA

fulltext(2550 kB)496 downloads
File information
File name FULLTEXT01.pdfFile size 2550 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
The Department of Physics, Chemistry and Biology
Bioinformatics (Computational Biology)

Search outside of DiVA

GoogleGoogle Scholar
Total: 496 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 653 hits
ReferencesLink to record
Permanent link

Direct link