liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Detektering av sprickor i vägytor med hjälp av Datorseende
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology.
2005 (Swedish)Independent thesis Basic level (professional degree), 20 credits / 30 HE creditsStudent thesisAlternative title
Pavement Crack Detection Using Computer Vision (English)
Abstract [en]

This thesis describes new methods for automatic crack detection in pavements. Cracks in pavements can be used as an early indication for the need of reparation.

Automatic crack detection is preferable compared to manual inventory; the repeatability can be better, the inventory can be done at a higher speed and can be done without interruption of the traffic.

The automatic and semi-automatic crack detection systems that exist today use Image Analysis methods. There are today powerful methods available in the area of Computer Vision. These methods work in higher dimensions with greater complexity and generate measures of local signal properties, while Image Analyses methods for crack detection use morphological operations on binary images.

Methods for digitalizing video data on VHS-cassettes and stitching images from nearby frames have been developed.

Four methods for crack detection have been evaluated, and two of them have been used to form a crack detection and classification program implemented in the calculation program Matlab.

One image set was used during the implementation and another image set was used for validation. The crack detection system did perform correct detection on 99.2 percent when analysing the images which were used during implementation. The result of the crack detection on the validation data was not very good. When the program is being used on data from other pavements than the one used during implementation, information about the surface texture is required to calibrate the crack detection.

Place, publisher, year, edition, pages
Institutionen för systemteknik , 2005. , 75 p.
Keyword [en]
Technology, pavement, asphalt, crack detection, computer vision, orientation tensor, structure tensor, image processing
Keyword [sv]
TEKNIKVETENSKAP
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-2818ISRN: LITH-ISY-EX--05/3699--SEOAI: oai:DiVA.org:liu-2818DiVA: diva2:20160
Subject / course
Computer Vision Laboratory
Uppsok
Technology
Supervisors
Examiners
Available from: 2005-04-11 Created: 2005-04-11 Last updated: 2012-07-02

Open Access in DiVA

fulltext(2261 kB)976 downloads
File information
File name FULLTEXT01.pdfFile size 2261 kBChecksum MD5
57b8418f3d16f85b0588d7d3432e770aa8cea7be97ea27256d483c6be26b51649b7ccf6b
Type fulltextMimetype application/pdf

By organisation
Computer VisionThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 976 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 433 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf