liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Synthesis of phosphorus-carbide thin films by magnetron sputtering
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.ORCID iD: 0000-0001-9402-1491
Research Institute for Technical Physics and Materials Science, P.O. Box 49, Budapest, Hungary.
Linköping University, Department of Physics, Chemistry and Biology, Thin Film Physics. Linköping University, The Institute of Technology.
Show others and affiliations
2008 (English)In: physica status solidi (RRL) - Rapid Research Letters, ISSN 1862-6254, Vol. 2, no 4, 191-193 p.Article in journal (Refereed) Published
Abstract [en]

Phosphorus-carbide, CPx (0.025≤x≤0.1) thin films have beensynthesized by magnetron sputtering from pressed graphite-phosphorustargets. The films were characterized by X-ray photoelectron spectroscopy,transmission electron microscopy and diffraction, andnanoindentation. CP0.02 exhibits C-P bonding in an amorphous structure with elements of curved grapheneplanes, yielding a material with unique short range order. These features are consistent with what has been predicted by our results of theoreticallymodeled synthetic growth of CPx. The films are mechanicallyresilient with hardness up to 24 GPa and elastic recovery upto 72%.

Place, publisher, year, edition, pages
Wiley InterScience , 2008. Vol. 2, no 4, 191-193 p.
Keyword [en]
Phosphorus-carbide (CPx), thin films, magnetron sputtering, resilient material
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
URN: urn:nbn:se:liu:diva-17114OAI: oai:DiVA.org:liu-17114DiVA: diva2:202001
Available from: 2009-03-06 Created: 2009-03-06 Last updated: 2016-08-31Bibliographically approved
In thesis
1. Fullerene-like CNx and CPx Thin Films; Synthesis, Modeling, and Applications
Open this publication in new window or tab >>Fullerene-like CNx and CPx Thin Films; Synthesis, Modeling, and Applications
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This Thesis concerns the development of fullerene-like (FL) carbon nitride (CNx) thin films and the discovery of phosphorus-carbide (CPx) compounds. The work dedicated to CPx include first-principles theoretical simulations of the growth and properties of FL-CPx structures. I have employed DC magnetron sputtering methods to synthesize both CNx and CPx thin films. The deposition conditions for CPx films were chosen on the basis of the theoretical results as well as from the experience from the deposition of FL-CNx thin films.

The characterization of the CPx films is divided into three main directions: structural characterization by transmission electron microscopyand scanning electron microscopy, analysis of the amount of elements and chemical bonds presentin the structure by X-ray photoelectron spectroscopy and Auger spectroscopy, and mechanicalproperty analysis by nanoindentation. The CPx films exhibit a short range orderedstructure with FL characteristics for substrate temperature of 300 °C and for a phosphorus content of 10-15 at.%, which isconsistent with the theoretical findings. These films also displayed the best mechanical properties in terms of hardness and resiliency, which are better than those of the corresponding FL-CNx films.

For the FL-CNx thin film material, I find that the surface water adsorption is lower compared to commercial computer hard disk top coatings. Following that line the dangling bonds in FL-CNx coatings have been investigated  by electron spin resonance (ESR). The absence of ESR signal for FL-CNx indicates very low density of dangling bonds in the material, which explains the low water adsorption tendency.

The potential for using highly elastic FL-CNx coatings in an automotive valve-train environment has also been investigated. CNx coatings of different nitrogen content were investigated using microscopy, wear testing, nanoindentation testing, and in an experimental cam-tappet testing rig. The FL-CNx coating with the higher value of hardness/elastic modulus showed greater durability in cam-tappet wear testing.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 60 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1247
Keyword
Phosphorus-carbide (CPx), carbon nitride (CNx), thin films, resilient coatings, magnetron sputtering, theoretical modeling
National Category
Other Engineering and Technologies not elsewhere specified
Identifiers
urn:nbn:se:liu:diva-17126 (URN)978-91-7393-676-7 (ISBN)
Public defence
2009-03-30, Planck, Fysikhuset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2009-03-24 Created: 2009-03-06 Last updated: 2016-08-31Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to Ph.D. Thesis

Authority records BETA

Furlan, AndrejGueorguiev, Gueorgui KostovHögberg, HansBraun, SlawomirStafström, SvenHultman, Lars

Search in DiVA

By author/editor
Furlan, AndrejGueorguiev, Gueorgui KostovHögberg, HansBraun, SlawomirStafström, SvenHultman, Lars
By organisation
Thin Film PhysicsThe Institute of TechnologySurface Physics and Chemistry Computational Physics
Other Engineering and Technologies not elsewhere specified

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 418 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf