liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Support Vector Machines for Classification applied to Facial Expression Analysis and Remote Sensing
Linköping University, Department of Electrical Engineering.
2005 (Swedish)Independent thesis Basic level (professional degree)Student thesisAlternative title
Support Vector Machines for Classification applied to Facial Expression Analysis and Remote Sensing (English)
Abstract [en]

The subject of this thesis is the application of Support Vector Machines on two totally different applications, facial expressions recognition and remote sensing.

The basic idea of kernel algorithms is to transpose input data in a higher dimensional space, the feature space, in which linear operations on the data can be processed more easily. These operations in the feature space can be expressed in terms of input data thanks to the kernel functions. Support Vector Machines is a classifier using this kernel method by computing, in the feature space and on basis of examples of the different classes, hyperplanes that separate the classes. The hyperplanes in the feature space correspond to non linear surfaces in the input space.

Concerning facial expressions, the aim is to train and test a classifier able to recognise, on basis of some pictures of faces, which emotion (among these six ones: anger, disgust, fear, joy, sad, and surprise) that is expressed by the person in the picture. In this application, each picture has to be seen has a point in an N-dimensional space where N is the number of pixels in the image.

The second application is the detection of camouflage nets hidden in vegetation using a hyperspectral image taken by an aircraft. In this case the classification is computed for each pixel, represented by a vector whose elements are the different frequency bands of this pixel.

Place, publisher, year, edition, pages
Institutionen för systemteknik , 2005. , 56 p.
Keyword [en]
Technology, Support Vector Machines, hyperspectral imagery, facial expressions, remote sensing, classification
Keyword [sv]
National Category
Engineering and Technology
URN: urn:nbn:se:liu:diva-2938ISRN: LITH-ISY-EX--05/3717--SEOAI: diva2:20281
Available from: 2005-06-15 Created: 2005-06-15

Open Access in DiVA

fulltext(2861 kB)2163 downloads
File information
File name FULLTEXT01.pdfFile size 2861 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
Department of Electrical Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 2163 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1776 hits
ReferencesLink to record
Permanent link

Direct link