liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Co-sputtered metal and SiO2 layers for use in thick-film MISiC NH3 sensors
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.
Linköping University, Department of Physics, Chemistry and Biology, Applied Physics . Linköping University, The Institute of Technology.ORCID iD: 0000-0002-0873-2877
Show others and affiliations
2006 (English)In: IEEE Sensors Journal, ISSN 1530-437X, Vol. 6, no 4, 887-897 p.Article in journal (Refereed) Published
Abstract [en]

High-temperature metal-insulator-silicon-carbide (MISiC) sensors are currently under development for use as NH3 sensors in selective-catalytic-reduction (SCR) systems in diesel engines or non-SCR (NSCR) systems in boilers. The detection of NH3 by these sensors requires the presence of triple points where the gas, the metal, and the insulator meet. These triple points have traditionally been located at the interface between the insulator and a porous metal. However, to facilitate the long-term stability of the devices when used in a harsh environment, a nonporous gate material would be preferred. Here, the behavior of the samples where such triple points have been introduced in a dense film through cosputtering of the insulator (SiO 2), and either Pt or Ir is studied. The NH3 sensitivity of the materials was found to be in accordance with the earlier investigations on Si-based samples with cosputtered gate materials. Several metal-to-insulator ratios for each of the metals Pt and Ir were studied. The sensitivity of the layers as well as their selectivity to different concentrations of NH3 at temperatures ranging from 150 degC to 450 degC was investigated. The films containing 60%-70% Pt or Ir were found to give a high sensitivity toward NH3. These samples were shown to be sensitive also to propylene and H2 but were rather insensitive to NO and CO.

Place, publisher, year, edition, pages
2006. Vol. 6, no 4, 887-897 p.
Keyword [en]
Ammonia, cosputtered films, iridium, metal insulator silicon carbide (MISiC), platinum, selective catalytic reduction (SCR), silicon dioxide (SiO2), thick film
National Category
Natural Sciences
URN: urn:nbn:se:liu:diva-13410DOI: 10.1109/JSEN.2006.877973OAI: diva2:20682
Available from: 2005-11-10 Created: 2005-11-10 Last updated: 2015-03-24
In thesis
1. Studies of MISiC-FET sensors for car exhaust gas monitoring
Open this publication in new window or tab >>Studies of MISiC-FET sensors for car exhaust gas monitoring
2005 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The increasing size of the car fleet makes it important to find ways of lowering the amounts of pollutants from each individual diesel or gasoline engine to almost zero levels. The pollutants from these engines predominantly originate from emissions at cold start, in the case when gasoline is utilized, and high NOx emissions and particulates from diesel engines.

The cold start emissions from gasoline vehicles are primarily due to a high light-off time for the catalytic converter. Another reason is the inability to quickly heat the sensor used for controlling the air-to-fuel ratio in the exhausts, also called the lambda value, which is required to be in a particular range for the catalytic converter to work properly. This problem may be solved utilizing another, more robust sensor for this purpose.

One way of treating the high NOx levels from diesel engines is to introduce ammonia in the exhausts and let it react with the NOx in a special catalytic converter to form nitrogen gas and water, which is called SCR (selective catalytic reduction). However, in order to make this system reduce NOx efficiently enough for meeting future legislations, closed loop control is required. To realize this type of system an NOx or ammonia sensor is needed.

This thesis presents the efforts made to test the SiC-based field effect sensor device both as a cold start lambda sensor for gasoline engines and as an NH3 sensor for SCR systems in diesel engines.

The MISiC (metal insulator silicon carbide) lambda sensor has proven to be both sensitive and selective to lambda, and its properties have been studied in lambda stairs both in gasoline engine exhausts and in the laboratory. There is, however, a small cross-sensitivity to CO. The influence of metal gate restructuring on the linearity of the sensor has also been investigated. The metal tends to form islands by time, which decreases the catalytic activity and thereby gives the sensor, which is binary when fresh, a linear behavior. Successful attempts to prevent the restructuring through depositing a protective layer of insulator on top of the metal were made. The influence of increasing the catalytic activity in the measurement cell was also studied. It was concluded that the location of the binary switch point of MISiC lambda sensors could be moved towards the stoichiometric value if the consumption of gases in the measurement cell was increased.

The MISiC NH3 sensor for SCR systems has been shown to be highly sensitive to ammonia both in laboratory and diesel engine measurements. The influence of other diesel exhaust gas components, such as NOx, water or N2O has been found to be low. In order to make the ammonia sensor more long-term stable experiments on samples with different types of co-sputtered Pt or Ir/SiO2 gas-sensitive layers were performed. These samples turned out to be sensitive to NH3 even though they were dense and NH3 detection normally requires porous films.

The speed of response for both sensor types has been found to be fast enough for closed loop control in each application.

Place, publisher, year, edition, pages
Institutionen för fysik, kemi och biologi, 2005
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 931
field effect sensor, gas detection, selective catalytic reduction, lambda, cold start, ammonia, silicon carbide, engine exhaust
National Category
Physical Sciences
urn:nbn:se:liu:diva-4674 (URN)91-85297-61-5 (ISBN)
Public defence
2005-04-22, Hörsal Planck, Fysikhuset, Campus Valla, Linköpings univeristet, Linköping, 10:15 (English)
On the day of the ublic defence of the doctoral thesis, the status of article IV was: accepted, article V was: submitted and article VII was: manuscript.Available from: 2005-11-10 Created: 2005-11-10 Last updated: 2014-01-09

Open Access in DiVA

No full text

Other links

Publisher's full textLink to Ph.D. thesis

Search in DiVA

By author/editor
Wingbrant, HelenaEriksson, MatsLloyd Spetz, Anita
By organisation
Applied Physics The Institute of Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 199 hits
ReferencesLink to record
Permanent link

Direct link