liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Experience from introducing Unified Modeling Language/Systems Modeling Language at Saab Aerosystems
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology. (Saab Aerosystems, Sweden)
Saab Aerosystems, Sweden.
Combitech, Sweden.
Linköping University, Department of Management and Engineering, Machine Design. Linköping University, The Institute of Technology.
2010 (English)In: Systems Engineering, ISSN 1098-1241, E-ISSN 1520-6858, Vol. 13, no 4, 369-380 p.Article in journal (Refereed) Published
Abstract [en]

A Unified Modeling Language/Systems Modeling Language (UML/SysML) subset was the modeling notation selected for an aerospace systems engineering project at Saab Aerosystems. In this paper, the rationale for selecting UML/SysML is given, along with a description of the situation at the project planning stage regarding business conditions, method and tools support. The usage of use case, sequence, and activity diagrams are described as well as definition of functional chains with SysML. Furthermore, the connections to system implementation activities including code generation and simulation are discussed. The advantages and disadvantages of using UML/SysML from experience in an industrial context are reported.

It is also described how UML/SysML is related to industrial research projects in the Model Based Systems Engineering (MBSE) methods and tools area. Introducing UML/SysML with a methodology and a supporting toolset in an operative organization require a clear strategy, including planning, just-in-time training, and mentor support. Finally, industrial needs for further development of SysML are discussed.

Place, publisher, year, edition, pages
Wiley , 2010. Vol. 13, no 4, 369-380 p.
Keyword [en]
Systems Modeling Language, Unified Modeling Language, Model Based Systems Engineering, Unmanned Aerial Vehicle
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-17941DOI: 10.1002/sys.20156ISI: 000284008700005OAI: oai:DiVA.org:liu-17941DiVA: diva2:213026
Available from: 2009-04-27 Created: 2009-04-27 Last updated: 2012-02-16Bibliographically approved
In thesis
1. Aircraft Systems Modeling: Model Based Systems Engineering in Avionics Design and Aircraft Simulation
Open this publication in new window or tab >>Aircraft Systems Modeling: Model Based Systems Engineering in Avionics Design and Aircraft Simulation
2009 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Aircraft developers like other development and manufacturing companies, are experiencing increasing complexity in their products and growing competition in the global market. One way to confront the challenges is to make the development process more efficient and to shorten time to market for new products/variants by using design and development methods based on models. Model Based Systems Engineering (MBSE) is introduced to, in a structured way, support engineers with aids and rules in order to engineer systems in a new way.

In this thesis, model based strategies for aircraft and avionics development are studied. A background to avionics architectures and in particular Integrated Modular Avionics is described. The integrating discipline Systems Engineering, MBSE and applicable standards are also described. A survey on available and emerging modeling techniques and tools, such as Hosted Simulation, is presented and Modeling Domains are defined in order to analyze the engineering environment with all its vital parts to support an MBSE approach.

Time and money may be saved by using modeling techniques that enable understanding of the engineering problem, state-of-the-art analysis and team communication, with preserved or increased quality and sense of control. Dynamic simulation is an activity increasingly used in aerospace, for several reasons; to prove the product concept, to validate stated requirements, and to verify the final implementation. Simulation is also used for end-user training, with specialized training simulators, but with the same underlying models. As models grow in complexity, and the set of simulation platforms is expanded, new needs for specification, model building and configuration support arise, which requires a modeling framework to be efficient.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 106 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1394
Keyword
MBSE, MBD, Avionics, Simulation
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-17573 (URN)LIU-TEK-LIC-2009:2 (Local ID)978-91-7393-692-7 (ISBN)LIU-TEK-LIC-2009:2 (Archive number)LIU-TEK-LIC-2009:2 (OAI)
Presentation
2009-03-06, Hus A, Sal A37, Campus Valla, Linköpings Universitet, Linköping, 10:15 (Swedish)
Opponent
Supervisors
Available from: 2009-04-27 Created: 2009-04-01 Last updated: 2009-04-27Bibliographically approved
2. Variability and Customization of Simulator Products: A Product Line Approach in Model Based Systems Engineering
Open this publication in new window or tab >>Variability and Customization of Simulator Products: A Product Line Approach in Model Based Systems Engineering
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

AIRCRAFT DEVELOPERS, like other organizations within development and manufacturing, are experiencing increasing complexity in their products and growing competition in the global market. Products are built from increasingly advanced technologies and their mechanical, electronic, and software parts grow in number and become more interconnected. Different approaches are used to manage information and knowledge of products in various stages of their lifecycle.

"Reuse" and "Model Based Development" are two prominent trends for improving industrial development efficiency. The product line approach is used to reduce the time to create product variants by reusing components. The model based approach provides means to capture knowledge about a system in the early lifecycle stages for usage throughout its entire lifetime. It also enables structured data  management as a basis for analysis, automation, and team collaboration for efficient management of large systems and families of products.

This work is focused on the combination of methods and techniques within;

  • modeling and simulation-based development, and
  • (re)use of simulation models through the product line concept.

With increasing computational performance and more efficient techniques/tools for building simulation models, the number of models increases, and their usage ranges from concept evaluation to end-user training. The activities related to model verification and validation contribute to a large part of the overall cost for development and maintenance of simulation models. The studied methodology aims to reduce the number of similar models created by different teams during design, testing, and end-user support of industrial products.

Results of the work include evaluation of a configurator to customize and integrate simulation models for different types of aircraft simulators that are part of a simulator product family. Furthermore, contribution comprises results where constraints in the primary product family (aircraft) govern the configuration space of the secondary product family (simulators). Evaluation of the proposed methodology was carried out in cooperation with the simulator department for the 39 Gripen fighter aircraft at Saab Aeronautics.

Abstract [sv]

FLYGPLANSTILLVERKARE LIKSOM andra industrier inom utveckling och tillverkning, hanterar ökande komplexitet i sina produkter och upplever en större konkurrens på den globala marknaden. Produkter byggs från allt mer avancerad teknologi. Ingående delar av mekanik, elektronik och mjukvara växer i antal och blir allt mer integrerade. Olika metoder används för att hantera information och kunskap om produkter i olika steg av dess livscykel.

”Återanvändning” och ”Modellbaserad utveckling” är två tydliga trender för att öka effektiviteten inom industriell utveckling. Produktfamiljer används för att minska ledtider när man skapar varianter av produkter genom att återanvända färdiga komponenter. Modellbaserade metoder ger möjlighet att tidigt i livscykeln samla kunskap om ett system för att användas under hela systemets livstid. De ger också strukturerad hantering av data som grund för analys, automatisering och samarbete mellan utvecklingsteam, vilket är en förutsättning för effektiv hantering av komplexa system och produkter.

Detta arbete är fokuserat på en kombination av metoder och tekniker för;

  • utveckling som baseras på modellering och simulering, och
  • (åter)användning av simuleringsmodeller.

Med ökande beräkningsprestanda och effektivare metoder/verktyg för att bygga simuleringsmodeller så ökar antalet modeller och deras användning spänner allt från konceptvärderingen till utbildning av slutanvändare. Arbetet med verifiering och validering av simuleringsmodeller utgör en stor del av deras totala utvecklings- och underhållskostnader. De studerade metoderna syftar till att minska antalet liknande modeller som hanteras av olika team för olika syften, som till exempel; utveckling, verifiering och som stöd för slutanvändare.

Resultat av arbete inkluderar utvärdering av en konfigurator för att välja, integrera och anpassa simuleringsmodeller för olika typer av flygplanssimulatorer i en simulatorproduktfamilj. Dessutom bidrar arbetet med en metodik där begränsningarna i den primära produktfamiljen (flygplan) begränsar konfigurationsutrymmet för den sekundära produktfamiljen (simulatorer). Utvärdering av den föreslagna metoden har genomförts i samarbete med simulatoravdelning för flygplan 39 Gripen på Saab Aeronautics.

Place, publisher, year, edition, pages
Linköping University Electronic Press, 2012. 83 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1427
National Category
Computer and Information Science Mechanical Engineering
Identifiers
urn:nbn:se:liu:diva-73572 (URN)978-91-7519-963-4 (ISBN)
Public defence
2012-03-08, C3, Hus C, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2012-02-16 Created: 2012-01-09 Last updated: 2012-02-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Andersson, HenricJohansson, Olof

Search in DiVA

By author/editor
Andersson, HenricJohansson, Olof
By organisation
Machine DesignThe Institute of Technology
In the same journal
Systems Engineering
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 804 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf