liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prognostic components and predictive modelling of prognosis in early RA
Linköping University, Department of Behavioural Sciences and Learning. Linköping University, Faculty of Arts and Sciences.
Linköping University, Department of Medicine and Health Sciences, Division of Preventive and Social Medicine and Public Health Science. Linköping University, Faculty of Health Sciences. (Landstinget i Östergötland; Centre for Public Health Sciences; Centre for Public Health Sciences; Folkhälsovetenskapligt centrum; Folkhälsovetenskapligt centrum)ORCID iD: 0000-0001-6049-5402
Linköping University, Department of Clinical and Experimental Medicine, Rheumatology . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Department of Rheumatology in Östergötland.ORCID iD: 0000-0002-0153-9249
Linköping University, Department of Clinical and Experimental Medicine, Rehabilitation Medicine . Linköping University, Faculty of Health Sciences. Östergötlands Läns Landsting, Centre for Medicine, Pain and Rehabilitation Centre.
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Introduction: There is a need for tools that are easy to use in clinical practice supporting decision making upon treatment in early rheumatoid arthritis (RA). Aim: The aim was to identify components of prognosticators in early RA and to identify individual patients with a poor prognosis as early as possible.

Methods: Two cohorts from the Swedish TIRA project including 320+408 patients with recent onset RA were included in the study. Disease activity was measured by C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and the 28-joint count disease activity score (DAS-28), and by the physicians’ global assessment of disease activity (PGA). Disability was assessed as activity limitation by the Swedish version of the Health Assessment Questionnaire (HAQ) and impairment was reported by pain on a visual analogue scale of 0–100 mm. Serological markers were rheumatoid factor (RF) and anti-CCP. RF was measured at the time for diagnosis, and anti-CCP at the time of diagnosis or at one or some of the follow-ups. If at least one anti-CCP test was positive, the patient was judged to be anti-CCP-positive. Assuming different clinical practice in the different cohorts, two different treatment strategies were assumed based on clinical practice in real-world settings. Principal Component Analysis and Multiple Linear Regression Analysis were used to identify prognosticators. Prediction rules were identified by data-driven approach, controlling for different treatment strategies.

Results: Progression of disease and disability measures and inflammation measures the first three months after inclusion predicted a considerable part of DAS-28 at the 1-year follow-up. Serological markers had a larger explanatory power for men than for women. Anti-CCP was a significant predictor for men, but not for women. Two versions of rules, one for women and one for men, predicting good or poor prognosis at one year after inclusion were produced by using measures of disability (Health Assessment Questionnaire), DAS-28, relative change in DAS-28 during first three months, sex, and test of anti-CCP. The rules demanded high prognostic specificity but the prognostic sensitivity was moderate.

Conclusion: A considerable part of DAS-28 at one year after inclusion could be explained by the first 3 months’ progression of disease, disability and inflammation. Anti-CCP was predictive for men but not for women, and needs further investigation. A decision tree predicting poor prognosis among individual early RA-patients showed high specificity and moderate sensitivity on a validationcohort. The medical informatics approach used, controlling for different treatment strategies, yields promising results and further studies will control for more specific differences in treatment strategies, e.g. different DMARDs initiated.

National Category
Social Work
Identifiers
URN: urn:nbn:se:liu:diva-18104OAI: oai:DiVA.org:liu-18104DiVA: diva2:214749
Available from: 2009-05-06 Created: 2009-05-06 Last updated: 2015-08-31Bibliographically approved
In thesis
1. Focus on Chronic Disease through Different Lenses of Expertise: Towards Implementation of Patient-Focused Decision Support Preventing Disability: The Example of Early Rheumatoid Arthritis
Open this publication in new window or tab >>Focus on Chronic Disease through Different Lenses of Expertise: Towards Implementation of Patient-Focused Decision Support Preventing Disability: The Example of Early Rheumatoid Arthritis
2009 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Fokus på expertis inom kronisk sjukdom : Implementering av prognostiskt beslutsstöd med exempel från reumatoid artrit
Abstract [en]

Introduction: Rheumatoid arthritis (RA) is a chronic inflammatory disease. Treatment strategies emphasize early multi-professional interventions to reduce disease activity and to prevent disability, but there is a lack of knowledge on how optimal treatment can be provided to each individual patient.

Aim: To elucidate how clinical manifestations of early RA are associated to disease and disability outcomes, to strive for greater potential to establish prognosis in early RA, and to facilitate implementation of decision support through analyses of the decision-making environment in chronic care.

Methods: Multivariate statistics and mathematical modelling, as well as field observations and focus group interviews.

Results: Decision support: A prognostic tree that predicted patients with a poor prognosis (moderate or high levels of DAS-28) at one year after diagnosis had a performance of 25% sensitivity, 90% specificity and a positive predictive value of 76%. Implementation of a decision support application at a rheumatology unit should include taking into account incentive structures, workflow and awareness, as well as informal communication structures. Prognosis: A considerable part of the variance in disease activity at one year after diagnosis could be explained by disease progression during the first three months after diagnosis. Using different types of knowledge – different expertise – prior to standardized data mining methods was found to be a promising when mining (clinical) data for new patterns that elicit new knowledge. Disease and disability: Women report more fatigue than men in early RA, although the difference is not consistently significant. Fatigue in early RA is closely and rather consistently related to disease activity, pain and activity limitation, as well as to mental health and sleep disturbance.

Conclusion: A decision tree was designed to identify patients at risk of poor prognosis at one year after the diagnosis of RA. When constructing prediction rules for good or poor prognosis, including more measures of disease and disability progressions showed promise. Using different types of knowledge – different lenses of expertise – prior to standardized data mining methods was also a promising method when mining (clinical) data for new patterns that elicit new knowledge.

Abstract [en]

Introduktion: Reumatoid artrit (RA) är en kronisk inflammatorisk sjukdom. Dagens behandlingsstrategi bygger på tidiga multiprofessionella insatser för att reducera sjukdomsaktivitet och minska risken för framtida funktionshinder. Idag finns stora datamängder tillgängliga gällande medicinering och utfall vid RA. Dessa data erbjuder möjligheter att generera ny kunskap som kan användas för att forma beslutsstöd.

Syfte: Att undersöka hur olika kliniska manifestationer vid tidig RA samvarierar med funktionshinder och sjukdomsaktivitet, att pröva metoder att ställa prognos vid tidig RA, och att analysera en kontext för beslutsfattande inom vård av kroniskt sjuka.

Metod: Multivariat statistik och matematisk modellering, samt observationsstudier och fokusgruppsintervjuer.

Resultat: Beslutsstöd: Ett beslutsträd utformades för att bestämma vilka patienter som har dålig prognos (måttlig eller hög DAS-28) ett år efter diagnos. Beslutsträdet hade 25 % sensitivitet, 90 % specificitet och ett positivt prediktivt värde på 76 %. Vid införande av beslutsstöd på en reumatologisk klinik befanns det nödvändigt att hänsyn tas till incitamentsstrukturer, arbetsflöde och samarbetsformer. Informella kommunikationsstrukturer kan också ha stort inflytande på klinisk praxis. Prognos: En betydande del av variansen i sjukdomsaktivitet ett år efter diagnos kan förklaras av sjukdomsprogression första tre månaderna efter diagnos. Att formalisera olika experters erfarenheter före standardiserade ”data mining” metoder är en lovande ansats när man letar efter mönster i (kliniska) databaser. Funktionshinder och sjukdomsaktivitet: Kvinnor rapporterar mer trötthet än män vid tidig RA, men skillnaden är inte konsistent över tid. Trötthet vid tidig RA är nära relaterat till sjukdomsaktivitet, smärta och aktivitets begränsningar, men också till mental hälsa och sömnstörningar.

Slutsats: Ett beslutsträd har utformats för att predicera patienter med dålig prognos inom tidig RA. Studier av fler mått på sjukdoms- och funktionshindersprogression behövs vid konstruktion av prediktionsregler för god eller dålig prognos framledes. Att använda sig av kunskap från olika experter – olika experters glasögon – vid sökandet efter mönster i stora datamängder för att generera ny kunskap är en lovande metodik. Implementering av beslutsstöd bör göras under övervägande av incitamentsstrukturer, arbetsflöde och samarbetsformer.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2009. 126 p.
Series
Linköping Studies in Arts and Science, ISSN 0282-9800 ; 481Studies from the Swedish Institute for Disability Research, ISSN 1650-1128 ; 29
Keyword
Clinical Decision Support, Rheumatology, Prognosis, Disability, Fatigue, Knowledge Engineering, Kliniskt beslutsstöd, reumatologi, prognos, funktionshinder, trötthet, kunskapsmodellering
National Category
Social Work
Identifiers
urn:nbn:se:liu:diva-18112 (URN)978-91-7393-613-2 (ISBN)
Public defence
2009-05-29, Key 1, Hus Key, Campus Valla, Linköpings universitet, Linköping, 13:00 (Swedish)
Opponent
Supervisors
Available from: 2009-05-06 Created: 2009-05-06 Last updated: 2014-09-25Bibliographically approved

Open Access in DiVA

No full text

Other links

Link to Ph.D. Thesis

Authority records BETA

Dahlström, ÖrjanTimpka, ToomasSkogh, ThomasThyberg, Ingrid

Search in DiVA

By author/editor
Dahlström, ÖrjanTimpka, ToomasSkogh, ThomasThyberg, Ingrid
By organisation
Department of Behavioural Sciences and LearningFaculty of Arts and SciencesDivision of Preventive and Social Medicine and Public Health ScienceFaculty of Health SciencesRheumatology Department of Rheumatology in ÖstergötlandRehabilitation Medicine Pain and Rehabilitation Centre
Social Work

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 110 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf