liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Fuzzy Control for an Unmanned Helicopter
2002 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems (WITAS) at Linköping University is the development of an intelligent command and control system, containing vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The intended operational environment is over widely varying geographical terrain with traffic networks and vehicle interaction of variable complexity, speed, and density.

The present version of APID-MK3 is capable of autonomous take-off, landing, and hovering as well as of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This is enough for performing missions like site mapping and surveillance, and communications, but for the above mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to explore the possibilities for achieving stable ‘‘aggressive’’ manoeuvrability at high-speeds, and test a variety of control solutions in the APID-MK3 simulation environment.

The objective of achieving ‘‘aggressive’’ manoeuvrability concerns the design of attitude/velocity/position controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not considered here since APIDMK3 has already have dedicated control modules that realize these flight modes.

With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller and a gradient descent method based controller. Common to both are model based design, the use of nonlinear control approaches, and an inner- and outer-loop control scheme. The performance of these controllers is tested in simulation using the nonlinear model of APID-MK3.

Place, publisher, year, pages
Institutionen för datavetenskap, 2002. 108 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 938
Keyword [en]
Helicopter, Robust control, Fuzzy gain scheduling, Gradient descent method
National Category
Computer Science
Identifiers
urn:nbn:se:liu:diva-5723 (URN)91-7373-313-X (ISBN)oai:DiVA.org:liu-5723 (OAI)diva2:21480 (DiVA)
Presentation
2002-05-16, 00:00 (English)
Supervisors
Note
Report code: LiU-Tek-Lic-2002:11. The format of the electronic version of this thesis differs slightly from the printed one: this is due mainly to font compatibility. The figures and body of the thesis are remaining unchanged.Available from2003-11-20 Created:2003-11-20 Last updated:2009-05-22

Open Access in DiVA

fulltext(3695 kB)3874 downloads
File information
File name FULLTEXT01.pdfFile size 3695 kBChecksum MD5
c206b44e02ee4169fa4521fb3fa03179318515390aa02156bc808550fd15ef4a47bf7c71
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Kadmiry, Bourhane
By organisation
AUTTEK - Autonomous Unmanned Aerial Vehicle Research Group The Institute of Technology
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 3874 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1068 hits
ReferencesLink to record
Permanent link

Direct link