liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Prediction as a Knowledge Representation Problem: A Case Study in Model Design
Linköping University, Department of Computer and Information Science, KPLAB - Knowledge Processing Lab. Linköping University, The Institute of Technology.
2002 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

The WITAS project aims to develop technologies to enable an Unmanned Airial Vehicle (UAV) to operate autonomously and intelligently, in applications such as traffic surveillance and remote photogrammetry. Many of the necessary control and reasoning tasks, e.g. state estimation, reidentification, planning and diagnosis, involve prediction as an important component. Prediction relies on models, and such models can take a variety of forms. Model design involves many choices with many alternatives for each choice, and each alternative carries advantages and disadvantages that may be far from obvious. In spite of this, and of the important role of prediction in so many areas, the problem of predictive model design is rarely studied on its own.

In this thesis, we examine a range of applications involving prediction and try to extract a set of choices and alternatives for model design. As a case study, we then develop, evaluate and compare two different model designs for a specific prediction problem encountered in the WITAS UAV project. The problem is to predict the movements of a vehicle travelling in a traffic network. The main difficulty is that uncertainty in predictions is very high, du to two factors: predictions have to be made on a relatively large time scale, and we have very little information about the specific vehicle in question. To counter uncertainty, as much use as possible must be made of knowledge about traffic in general, which puts emphasis on the knowledge representation aspect of the predictive model design.

The two mode design we develop differ mainly in how they represent uncertainty: the first uses coarse, schema-based representation of likelihood, while the second, a Markov model, uses probability. Preliminary experiments indicate that the second design has better computational properties, but also some drawbacks: model construction is data intensive and the resulting models are somewhat opaque.

Place, publisher, year, edition, pages
Institutionen för datavetenskap , 2002. , 106 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 942
Keyword [en]
WITAS, Unmanned irial Vehicle (UAV), helicopter, raffic surveillance, remote photogrammetry
National Category
Computer Science
URN: urn:nbn:se:liu:diva-5724ISBN: 91-7373-331-8 (print)OAI: diva2:21481
2002-04-29, 00:00 (English)
Report code: LiU-Tek-Lic-2002:15.Available from: 2002-11-20 Created: 2002-11-20 Last updated: 2009-05-18

Open Access in DiVA

fulltext(1129 kB)316 downloads
File information
File name FULLTEXT01.pdfFile size 1129 kBChecksum MD5
Type fulltextMimetype application/pdf

Other links

Link to Ph.D. Thesis

Search in DiVA

By author/editor
Haslum, Patrik
By organisation
KPLAB - Knowledge Processing LabThe Institute of Technology
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 316 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 426 hits
ReferencesLink to record
Permanent link

Direct link