liu.seSearch for publications in DiVA
Change search
ReferencesLink to record
Permanent link

Direct link
Upper gradients and Sobolev spaces on metric spaces
Linköping University, Department of Mathematics.
2006 (English)Independent thesis Basic level (professional degree), 20 points / 30 hpStudent thesis
Abstract [en]

The Laplace equation and the related p-Laplace equation are closely associated with Sobolev spaces. During the last 15 years people have been exploring the possibility of solving partial differential equations in general metric spaces by generalizing the concept of Sobolev spaces. One such generalization is the Newtonian space where one uses upper gradients to compensate for the lack of a derivative.

All papers on this topic are written for an audience of fellow researchers and people with graduate level mathematical skills. In this thesis we give an introduction to the Newtonian spaces accessible also for senior undergraduate students with only basic knowledge of functional analysis. We also give an introduction to the tools needed to deal with the Newtonian spaces. This includes measure theory and curves in general metric spaces.

Many of the properties of ordinary Sobolev spaces also apply in the generalized setting of the Newtonian spaces. This thesis includes proofs of the fact that the Newtonian spaces are Banach spaces and that under mild additional assumptions Lipschitz functions are dense there. To make them more accessible, the proofs have been extended with comments and details previously omitted. Examples are given to illustrate new concepts.

This thesis also includes my own result on the capacity associated with Newtonian spaces. This is the theorem that if a set has p-capacity zero, then the capacity of that set is zero for all smaller values of p.

Place, publisher, year, edition, pages
Matematiska institutionen , 2006. , 75 p.
Keyword [en]
capacity, measure, metric space, Sobolev space, upper gradient
National Category
URN: urn:nbn:se:liu:diva-5816ISRN: LiTH-MAT-EX--06/02--SEOAI: diva2:21524
Available from: 2006-03-02 Created: 2006-03-02

Open Access in DiVA

fulltext(465 kB)1043 downloads
File information
File name FULLTEXT01.pdfFile size 465 kBChecksum SHA-1
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 1043 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 1362 hits
ReferencesLink to record
Permanent link

Direct link