liu.seSearch for publications in DiVA
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of a statistical method to use prior information in the estimation of combustion parameters
Linköping University, Department of Electrical Engineering.
2006 (English)Independent thesis Basic level (professional degree), 20 points / 30 hpStudent thesisAlternative title
Utvärdering av en statistisk metod för att förbättra estimering av förbränningsparametrar med hjälp av förkunskap (Swedish)
Abstract [en]

Ion current sensing, where information about the combustion process in an SI-engine is gained by applying a voltage over the spark gap, is currently used to detect and avoid knock and misfire. Several researchers have pointed out that information on peak pressure location and air/fuel ratio can be gained from the ion current and have suggested several ways to estimate these parameters.

Here a simplified Bayesian approach was taken to construct a lowpass-like filter or estimator that makes use of prior information to improve estimates in crucial areas. The algorithm is computationally light and could, if successful, improve estimates enough for production use.

The filter was implemented in several variants and evaluated in a number of simulated cases. It was found that the proposed filter requires a number of trade-offs between variance, bias, tracking speed and accuracy that are difficult to balance. For satisfactory estimates and trade-off balance the prior information must be more accurate than was available.

It was also found that similar a task, constructing a general Bayesian estimator, has already been tackled in the area of particle filtering and that there are promising and unexplored possibilities there. However, particle filters require computational power that will not be available to production engines for some years.

Abstract [sv]

Vid jonströmsmätning utvinns information om förbränningsprocessen i en bensinmotor genom att en spänning läggs över gnistgapet och den resulterande strömmen mäts. Jonströmsmätning används idag för knack- och feltändningsdetektion. Flera forskare har påpekat att det finns än mer information i jonströmmen, bl.a. om bränsleblandningen och cylindertrycket och har även föreslagit metoder för att utvinna och använda den informationen för skattning av dessa parametrar.

Här presenteras en förenklad Bayesisk metod i form av en lågpassfilter-liknande skattare som använder förkunskap till att förbättra estimat på relevanta områden. Algoritmen är beräkningsmässigt lätt och kan, om den är framgångsrik, leverera skattningar av förbränningsparametrar som är tillräckligt bra för att användas för sluten styrning av en bensinmotor.

Skattaren, eller filtret, implementerades i flera varianter och utvärderades i ett antal simulerade fall. Resultaten visade på att flera svåra avvägningar måste göras mellan förbättring i varians, avvikelse och följning eftersom förbättring i den ena ledde till försämring i de andra. För att göra dessa avvägningar och få goda skattningar krävs bättre förhandskunskap och mätdata än vad som var tillgängligt.

Bayesisk skattning är ett stort befintligt område inom statistik och signalbehandling och den mest generella skattaren är partikelfiltret som har många intressanta tillämpningar och möjligheter. De har hittills inte använts inom skattning av förbränningsparametrar och har således go potential för framtida utveckling. De är dock beräkningsmässigt tunga och kräver beräkningsresurser utöver vad som är tillgängliga i ett motorstyrsystem idag.

Place, publisher, year, edition, pages
Institutionen för systemteknik , 2006. , 77 p.
Keyword [en]
bayesian estimation, ion current, air/fuel ratio, peak pressure location, SI engine control
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:liu:diva-6255ISRN: LITH-ISY-EX--06/3721--SEOAI: oai:DiVA.org:liu-6255DiVA: diva2:21726
Presentation
2006-03-28, Glashuset, B-Huset, Campus Valla, Linköping, 10:15
Uppsok
teknik
Supervisors
Examiners
Available from: 2006-04-11 Created: 2006-04-11

Open Access in DiVA

fulltext(1507 kB)516 downloads
File information
File name FULLTEXT01.pdfFile size 1507 kBChecksum SHA-1
a3fa3192ff9e2d212f369ce73372794c47e7a4f69baa704e211a7c60cc2ae85ee9cbd7be
Type fulltextMimetype application/pdf

By organisation
Department of Electrical Engineering
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar
Total: 516 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 533 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • oxford
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf